Existence of solutions to a two-dimensional model for nonisothermal two-phase flows of incompressible fluids
Annales de l'I.H.P. Analyse non linéaire, Volume 33 (2016) no. 6, pp. 1431-1454.

We consider a thermodynamically consistent diffuse interface model describing two-phase flows of incompressible fluids in a non-isothermal setting. The model was recently introduced in [11] where existence of weak solutions was proved in three space dimensions. Here, we aim to study the properties of solutions in the two-dimensional case. In particular, we can show existence of global in time solutions satisfying a stronger formulation of the model with respect to the one considered in [11].

DOI: 10.1016/j.anihpc.2015.05.006
Classification: 35Q35, 35K25, 76D05, 35D30
Keywords: Cahn–Hilliard, Navier–Stokes, Incompressible non-isothermal binary fluid, Global-in-time existence, A-priori estimates
@article{AIHPC_2016__33_6_1431_0,
     author = {Eleuteri, Michela and Rocca, Elisabetta and Schimperna, Giulio},
     title = {Existence of solutions to a two-dimensional model for nonisothermal two-phase flows of incompressible fluids},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1431--1454},
     publisher = {Elsevier},
     volume = {33},
     number = {6},
     year = {2016},
     doi = {10.1016/j.anihpc.2015.05.006},
     zbl = {1360.35175},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2015.05.006/}
}
TY  - JOUR
AU  - Eleuteri, Michela
AU  - Rocca, Elisabetta
AU  - Schimperna, Giulio
TI  - Existence of solutions to a two-dimensional model for nonisothermal two-phase flows of incompressible fluids
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 1431
EP  - 1454
VL  - 33
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2015.05.006/
DO  - 10.1016/j.anihpc.2015.05.006
LA  - en
ID  - AIHPC_2016__33_6_1431_0
ER  - 
%0 Journal Article
%A Eleuteri, Michela
%A Rocca, Elisabetta
%A Schimperna, Giulio
%T Existence of solutions to a two-dimensional model for nonisothermal two-phase flows of incompressible fluids
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 1431-1454
%V 33
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2015.05.006/
%R 10.1016/j.anihpc.2015.05.006
%G en
%F AIHPC_2016__33_6_1431_0
Eleuteri, Michela; Rocca, Elisabetta; Schimperna, Giulio. Existence of solutions to a two-dimensional model for nonisothermal two-phase flows of incompressible fluids. Annales de l'I.H.P. Analyse non linéaire, Volume 33 (2016) no. 6, pp. 1431-1454. doi : 10.1016/j.anihpc.2015.05.006. http://www.numdam.org/articles/10.1016/j.anihpc.2015.05.006/

[1] Abels, H. On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal., Volume 194 (2009), pp. 463–506 | DOI | Zbl

[2] Abels, H. Proceedings of the Conference “Nonlocal and Abstract Parabolic Equations and Their Applications”, Banach Cent. Publ., Volume vol. 86 (2009), pp. 9–19 (Bedlewo) | DOI | Zbl

[3] Anderson, D.M.; MacFadden, G.B.; Wheeler, A.A. Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., Volume 30 (1998), pp. 139–165 | DOI

[4] Boyer, F. Mathematical study of multi-phase flow under shear through order parameter formulation, Asymptot. Anal., Volume 20 (1999), pp. 175–212 | Zbl

[5] Cao, C.; Gal, C.G. Global solutions for the 2D NS–CH model for a two-phase flow of viscous, incompressible fluids with mixed partial viscosity and mobility, Nonlinearity, Volume 25 (2012), pp. 3211–3234 | Zbl

[6] Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011 | Zbl

[7] Brezzi, F.; Gilardi, G.; Kardestuncer, H. FEM Mathematics, Finite Element Handbook, McGraw–Hill Book Co., New York, 1987 (Part I: Chapt. 1: Functional Analysis, pp. 1.1–1.5; Chapt. 2: Functional Spaces, pp. 2.1–2.11; Chapt. 3: Partial Differential Equations, pp. 3.1–3.6)

[8] Bulíček, M.; Feireisl, E.; Málek, J. A Navier–Stokes–Fourier system for incompressible fluids with temperature dependent material coefficients, Nonlinear Anal., Real World Appl., Volume 10 (2009), pp. 992–1015 | DOI | Zbl

[9] Cahn, J.W.; Allen, S.M. A microscopic theory for domain wall motion and its experimental verification in FeAl alloy domain growth kinetics, J. Phys. C, Volume 7 (1977) no. 38, pp. 51–54

[10] Cahn, J.; Hilliard, J. Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., Volume 28 (1958), pp. 258–267 | DOI | Zbl

[11] Eleuteri, M.; Rocca, E.; Schimperna, G. On a non-isothermal diffuse interface model for two-phase flows of incompressible fluids, Discrete Contin. Dyn. Syst., Volume 35 (2015), pp. 2497–2522 | DOI | Zbl

[12] Feireisl, E. Mathematical theory of compressible, viscous, and heat conducting fluids, Comput. Math. Appl., Volume 53 (2007), pp. 461–490 | DOI | Zbl

[13] Feireisl, E.; Petzeltová, H.; Rocca, E. Existence of solutions to some models of phase changes with microscopic movements, Math. Methods Appl. Sci., Volume 32 (2009), pp. 1345–1369 | DOI | Zbl

[14] Frémond, M. Non-smooth Thermomechanics, Springer-Verlag, Berlin, 2002 | DOI | Zbl

[15] Gal, C.G.; Grasselli, M. Asymptotic behavior of a Cahn–Hilliard–Navier–Stokes system in 2D, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 27 (2010), pp. 401–436 | Numdam | Zbl

[16] Gal, C.G.; Grasselli, M. Trajectory attractors for binary fluid mixtures in 3D, Chin. Ann. Math., Ser. B, Volume 31 (2010), pp. 655–678 | Zbl

[17] Gal, C.G.; Grasselli, M. Instability of two-phase flows: a lower bound on the dimension of the global attractor of the Cahn–Hilliard–Navier–Stokes system, Phys. D, Volume 240 (2011), pp. 629–635 | Zbl

[18] Guo, Z.; Lin, P. A thermodynamically consistent phase-field model for two-phase flows with thermocapillary effects, 2014 | arXiv | Zbl

[19] Gurtin, M.E.; Polignone, D.; Viñals, J. Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., Volume 6 (1996), pp. 815–831 | DOI | Zbl

[20] Heida, M.; Málek, J.; Rajagopal, K.R. On the development and generalizations of Cahn–Hilliard equations within a thermodynamic framework, Z. Angew. Math. Phys., Volume 63 (2012), pp. 145–169 | Zbl

[21] Hohenberg, P.C.; Halperin, B.I. Theory of dynamical critical phenomena, Rev. Mod. Phys., Volume 49 (1977), pp. 435–479 | DOI

[22] Jasnow, D.; Viñals, J. Coarse-grained description of thermo-capillary flow, Phys. Fluids, Volume 8 (1996), pp. 660–669 | DOI | Zbl

[23] Kim, J.S. Phase-field models for multi-component fluid flows, Commun. Comput. Phys., Volume 12 (2012), pp. 613–661

[24] Ladyzhenskaja, O.A.; Solonnikov, V.A.; Ural'ceva, N.N. Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr., vol. 23, American Mathematical Society, Providence, RI, 1968 | DOI | Zbl

[25] Lamorgese, A.G.; Molin, D.; Mauri, R. Phase field approach to multiphase flow modeling, Milan J. Math., Volume 79 (2011), pp. 597–642 | DOI | Zbl

[26] Lions, J.L. Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod Gauthier-Villars, Paris, 1969 | Zbl

[27] Liu, C.; Shen, J. A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier spectral method, Phys. D, Volume 179 (2003), pp. 211–228 | Zbl

[28] Luterotti, F.; Stefanelli, U. Existence result for the one-dimensional full model of phase transitions, Z. Anal. Anwend., Volume 21 (2002), pp. 335–350 | DOI | Zbl

[29] Luterotti, F.; Stefanelli, U. Errata and addendum to “Existence result for the one-dimensional full model of phase transitions”, Z. Anal. Anwend., Volume 21 (2002), pp. 335–350

[30] Miranville, A.; Zelik, S. Robust exponential attractors for Cahn–Hilliard type equations with singular potentials, Math. Methods Appl. Sci., Volume 27 (2004), pp. 545–582 | DOI | Zbl

[31] Robinson, J.C. Infinite-Dimensional Dynamical Systems, Cambridge Texts Appl. Math., Cambridge University Press, 2001 | Zbl

[32] Rocca, E.; Rossi, R. “Entropic” solutions to a thermodynamically consistent PDE system for phase transitions and damage, SIAM J. Math. Anal. (2015) (in press, 2014) | arXiv | DOI | Zbl

[33] Simon, J. Compact sets in the space Lp(0,T;B) , Ann. Mat. Pura Appl. (4), Volume 146 (1987), pp. 65–96 | Zbl

[34] Starovoitov, V.N. The dynamics of a two-component fluid in the presence of capillary forces, Math. Notes, Volume 62 (1997), pp. 244–254 | DOI | Zbl

[35] Sun, P.; Liu, C.; Xu, J. Phase field model of thermo-induced Marangoni effects in the mixtures and its numerical simulations with mixed finite element method, Commun. Comput. Phys., Volume 6 (2009), pp. 1095–1117 | Zbl

[36] Temam, R. Navier–Stokes Equations. Theory and Numerical Analysis, Stud. Math. Appl., vol. 2, North-Holland Publishing Co., Amsterdam, New York, Oxford, 1977 | Zbl

[37] Trudinger, N.S. On imbeddings into Orlicz spaces and some applications, J. Math. Mech., Volume 17 (1967), pp. 473–483 | Zbl

[38] Yudovich, V.I. Some estimates connected with integral operators and with solutions of elliptic equations, Dokl. Akad. Nauk SSSR, Volume 138 (1961), pp. 805–808 | Zbl

[39] Zel'dovich, Ya.B.; Raizer, Yu.P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press, New York, 1966

[40] Zhao, K. Large time behavior of a Cahn–Hilliard–Boussinesq system on a bounded domain, Electron. J. Differ. Equ., Volume 2011 (2011), pp. 1–21 | Zbl

[41] Zhao, L.; Wu, H.; Huang, H. Convergence to equilibrium for a phase-field model for the mixture of two viscous incompressible fluids, Commun. Math. Sci., Volume 7 (2009), pp. 939–962 | Zbl

[42] Zhou, Y.; Fan, J. The vanishing viscosity limit for a 2D Cahn–Hilliard–Navier–Stokes system with a slip boundary condition, Nonlinear Anal., Real World Appl., Volume 14 (2013), pp. 1130–1134 | DOI | Zbl

Cited by Sources: