Dispersion for 1-D Schrödinger and wave equations with BV coefficients
Annales de l'I.H.P. Analyse non linéaire, Volume 33 (2016) no. 6, pp. 1473-1495.

In this paper we analyze the dispersion for one dimensional wave and Schrödinger equations with BV coefficients. In the case of the wave equation we give a complete answer in terms of the variation of the logarithm of the coefficient showing that dispersion occurs if this variation is small enough but it may fail when the variation goes beyond a sharp threshold. For the Schrödinger equation we prove that the dispersion holds under the same smallness assumption on the variation of the coefficient. But, whether dispersion may fail for larger coefficients is unknown for the Schrödinger equation.

DOI: 10.1016/j.anihpc.2015.06.002
Keywords: Schrödinger equation, Wave equation, One space dimension, BV coefficients, Dispersion and Strichartz estimates, Almost periodic functions
@article{AIHPC_2016__33_6_1473_0,
     author = {Beli, Constantin N. and Ignat, Liviu I. and Zuazua, Enrique},
     title = {Dispersion for {1-D} {Schr\"odinger} and wave equations with {BV} coefficients},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1473--1495},
     publisher = {Elsevier},
     volume = {33},
     number = {6},
     year = {2016},
     doi = {10.1016/j.anihpc.2015.06.002},
     zbl = {1364.35024},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2015.06.002/}
}
TY  - JOUR
AU  - Beli, Constantin N.
AU  - Ignat, Liviu I.
AU  - Zuazua, Enrique
TI  - Dispersion for 1-D Schrödinger and wave equations with BV coefficients
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 1473
EP  - 1495
VL  - 33
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2015.06.002/
DO  - 10.1016/j.anihpc.2015.06.002
LA  - en
ID  - AIHPC_2016__33_6_1473_0
ER  - 
%0 Journal Article
%A Beli, Constantin N.
%A Ignat, Liviu I.
%A Zuazua, Enrique
%T Dispersion for 1-D Schrödinger and wave equations with BV coefficients
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 1473-1495
%V 33
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2015.06.002/
%R 10.1016/j.anihpc.2015.06.002
%G en
%F AIHPC_2016__33_6_1473_0
Beli, Constantin N.; Ignat, Liviu I.; Zuazua, Enrique. Dispersion for 1-D Schrödinger and wave equations with BV coefficients. Annales de l'I.H.P. Analyse non linéaire, Volume 33 (2016) no. 6, pp. 1473-1495. doi : 10.1016/j.anihpc.2015.06.002. http://www.numdam.org/articles/10.1016/j.anihpc.2015.06.002/

[1] Banica, V. Dispersion and Strichartz inequalities for Schrödinger equations with singular coefficients, SIAM J. Math. Anal., Volume 35 (2003) no. 4, pp. 868–883 | DOI | Zbl

[2] Burq, N.; Planchon, F. Smoothing and dispersive estimates for 1D Schrödinger equations with BV coefficients and applications, J. Funct. Anal., Volume 236 (2006) no. 1, pp. 265–298 | DOI | Zbl

[3] Corduneanu, C. Almost Periodic Oscillations and Waves, Springer, New York, 2009 | DOI | Zbl

[4] Demanet, L.; Peyré, G. Compressive wave computation, Found. Comput. Math., Volume 11 (2011) no. 3, pp. 257–303 | DOI | Zbl

[5] Fouque, J.-P.; Garnier, J.; Papanicolaou, G.; Sølna, K. Wave Propagation and Time Reversal in Randomly Layered Media, Stochastic Modelling and Applied Probability, vol. 56, Springer, New York, 2007 | Zbl

[6] Grafakos, L. Classical Fourier Analysis, Graduate Texts in Mathematics, vol. 249, Springer, New York, 2008 | Zbl

Cited by Sources: