Dynamics of nematic liquid crystal flows: The quasilinear approach
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 2, pp. 397-408.

On considère le modèle de Leslie–Ericksen pour les cristaux liquides nématiques dans un domaine borné ΩRn. On obtient une théorie dynamique complète pour ce système, analysé comme une équation d'évolution quasi-linéare dans le cadre LpLq. En particulier, on démontre l' existence et l'unicité locales d'une solution forte, qui s'étend en un solution forte globale si les conditions initiales sont près d'un équilibre. De plus, on montre que la solution est analytique réelle en espace et temps.

Consider the (simplified) Leslie–Ericksen model for the flow of nematic liquid crystals in a bounded domain ΩRn for n>1. This article develops a complete dynamic theory for these equations, analyzing the system as a quasilinear parabolic evolution equation in an LpLq-setting. First, the existence of a unique local strong solution is proved. This solution extends to a global strong solution, provided the initial data are close to an equilibrium or the solution is eventually bounded in the natural norm of the underlying state space. In this case the solution converges exponentially to an equilibrium. Moreover, the solution is shown to be real analytic, jointly in time and space.

DOI : 10.1016/j.anihpc.2014.11.001
Classification : 35Q35, 76A15, 76D03, 35K59
Mots clés : Nematic liquid crystals, Quasilinear parabolic evolution equations, Regularity, Global solutions, Convergence to equilibria
@article{AIHPC_2016__33_2_397_0,
     author = {Hieber, Matthias and Nesensohn, Manuel and Pr\"uss, Jan and Schade, Katharina},
     title = {Dynamics of nematic liquid crystal flows: {The} quasilinear approach},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {397--408},
     publisher = {Elsevier},
     volume = {33},
     number = {2},
     year = {2016},
     doi = {10.1016/j.anihpc.2014.11.001},
     zbl = {1334.35235},
     mrnumber = {3465380},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2014.11.001/}
}
TY  - JOUR
AU  - Hieber, Matthias
AU  - Nesensohn, Manuel
AU  - Prüss, Jan
AU  - Schade, Katharina
TI  - Dynamics of nematic liquid crystal flows: The quasilinear approach
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 397
EP  - 408
VL  - 33
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2014.11.001/
DO  - 10.1016/j.anihpc.2014.11.001
LA  - en
ID  - AIHPC_2016__33_2_397_0
ER  - 
%0 Journal Article
%A Hieber, Matthias
%A Nesensohn, Manuel
%A Prüss, Jan
%A Schade, Katharina
%T Dynamics of nematic liquid crystal flows: The quasilinear approach
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 397-408
%V 33
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2014.11.001/
%R 10.1016/j.anihpc.2014.11.001
%G en
%F AIHPC_2016__33_2_397_0
Hieber, Matthias; Nesensohn, Manuel; Prüss, Jan; Schade, Katharina. Dynamics of nematic liquid crystal flows: The quasilinear approach. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 2, pp. 397-408. doi : 10.1016/j.anihpc.2014.11.001. http://www.numdam.org/articles/10.1016/j.anihpc.2014.11.001/

[1] Amann, H. Linear and Quasilinear Parabolic Problems, vol. I: Abstract Linear Theory, Monogr. Math., vol. 89, Birkhäuser Boston Inc., Boston, MA, 1995 | MR | Zbl

[2] Amann, H. On the strong solvability of the Navier–Stokes equations, J. Math. Fluid Mech., Volume 2 (2000) no. 1, pp. 16–98 | DOI | MR | Zbl

[3] Angenent, S.B. Nonlinear analytic semiflows, Proc. R. Soc. Edinb. Sect. A, Volume 115 (1990) no. 1–2, pp. 91–107 | MR | Zbl

[4] Chandrasekhar, S. Liquid Crystals, Cambridge University press, 1992 | DOI

[5] Clément, P.; Li, S. Abstract parabolic quasilinear equations and application to a groundwater flow problem, Adv. Math. Sci. Appl., Volume 3 (1993/1994) no. Special Issue, pp. 17–32 | MR | Zbl

[6] Coutand, Daniel; Shkoller, Steve Well-posedness of the full Ericksen–Leslie model of nematic liquid crystals, C. R. Acad. Sci. Paris Sér. I Math., Volume 333 (2001) no. 10, pp. 919–924 MR 1873808 (2002j:82118) | MR | Zbl

[7] DeGennes, P.G.; Prost, J. The Physics of Liquid Crystals, Oxford, 1974

[8] Denk, R.; Hieber, M.; Prüss, J. Optimal Lp-Lq-estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., Volume 257 (2007) no. 1, pp. 193–224 | DOI | MR | Zbl

[9] Denk, Robert; Hieber, Matthias; Prüss, Jan R-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Am. Math. Soc., Volume 166 (2003) no. 788 viii+114 pp. MR 2006641 (2004i:35002) | MR | Zbl

[10] Ericksen, J.L. Hydrostatic theory of liquid crystals, Arch. Ration. Mech. Anal., Volume 9 (1962), pp. 371–378 | DOI | MR | Zbl

[11] Ericksen, J.L.; Kinderlehrer, D. Theory and Applications of Liquid Crystals, IMA Vol. Math. Appl., Volume vol. 5 (1987) (Papers from the IMA workshop held in Minneapolis, Minn., January 21–25, 1985) | Zbl

[12] Feireisl, Eduard; Frémond, Michel; Rocca, Elisabetta; Schimperna, Giulio A new approach to non-isothermal models for nematic liquid crystals, Arch. Ration. Mech. Anal., Volume 205 (2012) no. 2, pp. 651–672 (MR 2947543) | MR | Zbl

[13] Geissert, M.; Hess, M.; Hieber, M.; Schwarz, C.; Stavrakidis, K. Maximal Lp-Lq-estimates for the Stokes equation: a short proof of Solonnikov's theorem, J. Math. Fluid Mech., Volume 12 (2010) no. 1, pp. 47–60 | DOI | MR | Zbl

[14] Giga, Y. Domains of fractional powers of the Stokes operator in Lr spaces, Arch. Ration. Mech. Anal., Volume 89 (1985) no. 3, pp. 251–265 | DOI | MR | Zbl

[15] Hardt, R.; Kinderlehrer, D.; Lin, F.-H. Existence and partial regularity of static liquid crystal configurations, Commun. Math. Phys., Volume 105 (1986) no. 4, pp. 547–570 | DOI | MR | Zbl

[16] Hu, X.; Wang, D. Global solution to the three-dimensional incompressible flow of liquid crystals, Commun. Math. Phys., Volume 296 (2010) no. 3, pp. 861–880 | MR | Zbl

[17] Huang, T.; Wang, C.; Wen, H. Strong solutions of the compressible nematic liquid crystal flow, J. Differ. Equ., Volume 252 (2012) no. 3, pp. 2222–2265 | DOI | MR | Zbl

[18] Köhne, M.; Prüss, J.; Wilke, M. On quasilinear parabolic evolution equations in weighted Lp-spaces, J. Evol. Equ., Volume 10 (2010) no. 2, pp. 443–463 | DOI | MR | Zbl

[19] Leslie, F.M. Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., Volume 28 (1968) no. 4, pp. 265–283 | DOI | MR | Zbl

[20] Li, X.; Wang, D. Global solution to the incompressible flow of liquid crystals, J. Differ. Equ., Volume 252 (2012) no. 1, pp. 745–767 | MR | Zbl

[21] Lin, F.; Lin, J.; Wang, C. Liquid crystal flows in two dimensions, Arch. Ration. Mech. Anal., Volume 197 (2010) no. 1, pp. 297–336 | MR | Zbl

[22] Lin, F.-H. Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Commun. Pure Appl. Math., Volume 42 (1989) no. 6, pp. 789–814 | MR | Zbl

[23] Lin, F.-H.; Liu, C. Nonparabolic dissipative systems modeling the flow of liquid crystals, Commun. Pure Appl. Math., Volume 48 (1995) no. 5, pp. 501–537 | MR | Zbl

[24] Lin, F.-H.; Liu, C. Partial regularity of the dynamic system modeling the flow of liquid crystals, Discrete Contin. Dyn. Syst., Volume 2 (1996) no. 1, pp. 1–22 | MR | Zbl

[25] Ma, S. Classical solutions for the compressible liquid crystal flows with nonnegative initial densities, J. Math. Anal. Appl., Volume 397 (2013) no. 2, pp. 595–618 | MR | Zbl

[26] Meyries, M.; Schnaubelt, R. Interpolation, embeddings and traces of anisotropic fractional Sobolev spaces with temporal weights, J. Funct. Anal., Volume 262 (2012) no. 3, pp. 1200–1229 | DOI | MR | Zbl

[27] Prüss, J. Maximal regularity for evolution equations in Lp-spaces, Conf. Semin. Mat. Univ. Bari (2002) no. 285, pp. 1–39 (2003) | MR

[28] Prüss, J.; Simonett, G. Maximal regularity for evolution equations in weighted Lp-spaces, Arch. Math. (Basel), Volume 82 (2004) no. 5, pp. 415–431 | DOI | MR | Zbl

[29] Prüss, J.; Simonett, G. Analytic solutions for the two-phase Navier–Stokes equations with surface tension and gravity, Parabolic Problems, Prog. Nonlinear Differ. Equ. Appl., vol. 80, Springer, Basel, 2011, pp. 507–540 | MR | Zbl

[30] Prüss, J.; Simonett, G.; Zacher, R. On convergence of solutions to equilibria for quasilinear parabolic problems, J. Differ. Equ., Volume 246 (2009) no. 10, pp. 3902–3931 | DOI | MR | Zbl

[31] Solonnikov, V.A. Estimates for solutions of nonstationary Navier–Stokes equations, J. Math. Sci., Volume 8 (1977) no. 4, pp. 467–529 | DOI | Zbl

[32] Triebel, H. Interpolation Theory, Function Spaces, Differential Operators, North-Holl. Math. Libr., vol. 18, North-Holland Publishing Co., Amsterdam, 1978 | MR | Zbl

[33] Wang, C. Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data, Arch. Ration. Mech. Anal., Volume 200 (2011) no. 1, pp. 1–19 | DOI | MR | Zbl

[34] Wu, Hao; Xu, Xiang; Liu, Chun On the general ericksen-leslie system: Parodi's relation, well-posedness and stability, Arch. Ration. Mech. Anal., Volume 208 (2013), pp. 59–107 | MR | Zbl

Cité par Sources :