An extremal eigenvalue problem for the Wentzell–Laplace operator
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 2, pp. 409-450.

We consider the question of giving an upper bound for the first nontrivial eigenvalue of the Wentzell–Laplace operator of a domain Ω, involving only geometrical information. We provide such an upper bound, by generalizing Brock's inequality concerning Steklov eigenvalues, and we conjecture that balls maximize the Wentzell eigenvalue, in a suitable class of domains, which would improve our bound. To support this conjecture, we prove that balls are critical domains for the Wentzell eigenvalue, in any dimension, and that they are local maximizers in dimension 2 and 3, using an order two sensitivity analysis. We also provide some numerical evidence.

DOI : 10.1016/j.anihpc.2014.11.002
Classification : 35P15, 49K20, 49K40
Mots clés : Wentzell eigenvalues, Eigenvalue estimates, Shape optimization, Shape derivatives, Stability, Quantitative isoperimetric inequality
@article{AIHPC_2016__33_2_409_0,
     author = {Dambrine, M. and Kateb, D. and Lamboley, J.},
     title = {An extremal eigenvalue problem for the {Wentzell{\textendash}Laplace} operator},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {409--450},
     publisher = {Elsevier},
     volume = {33},
     number = {2},
     year = {2016},
     doi = {10.1016/j.anihpc.2014.11.002},
     zbl = {1347.35186},
     mrnumber = {3465381},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2014.11.002/}
}
TY  - JOUR
AU  - Dambrine, M.
AU  - Kateb, D.
AU  - Lamboley, J.
TI  - An extremal eigenvalue problem for the Wentzell–Laplace operator
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 409
EP  - 450
VL  - 33
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2014.11.002/
DO  - 10.1016/j.anihpc.2014.11.002
LA  - en
ID  - AIHPC_2016__33_2_409_0
ER  - 
%0 Journal Article
%A Dambrine, M.
%A Kateb, D.
%A Lamboley, J.
%T An extremal eigenvalue problem for the Wentzell–Laplace operator
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 409-450
%V 33
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2014.11.002/
%R 10.1016/j.anihpc.2014.11.002
%G en
%F AIHPC_2016__33_2_409_0
Dambrine, M.; Kateb, D.; Lamboley, J. An extremal eigenvalue problem for the Wentzell–Laplace operator. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 2, pp. 409-450. doi : 10.1016/j.anihpc.2014.11.002. http://www.numdam.org/articles/10.1016/j.anihpc.2014.11.002/

[1] Bendali, A.; Lemrabet, K. The effect of a thin coating on the scattering of a time-harmonic wave for the Helmholtz equation, SIAM J. Appl. Math., Volume 56 (1996) no. 6, pp. 1664–1693 | DOI | MR | Zbl

[2] Betta, M.F.; Brock, F.; Mercaldo, A.; Posteraro, M.R. A weighted isoperimetric inequality and applications to symmetrization, J. Inequal. Appl., Volume 4 (1999) no. 3, pp. 215–240 | MR | Zbl

[3] Bleecker, D.D. The spectrum of a Riemannian manifold with a unit Killing vector field, Trans. Am. Math. Soc., Volume 275 (1983) no. 1, pp. 409–416 | DOI | MR | Zbl

[4] Bonnaillie-Noël, V.; Dambrine, M.; Hérau, F.; Vial, G. On generalized Ventcel's type boundary conditions for Laplace operator in a bounded domain, SIAM J. Math. Anal., Volume 42 (2010) no. 2, pp. 931–945 | DOI | MR | Zbl

[5] Brasco, L.; De Philippis, G.; Ruffini, B. Spectral optimization for the Stekloff–Laplacian: the stability issue, J. Funct. Anal., Volume 262 (2012) no. 11, pp. 4675–4710 | DOI | MR | Zbl

[6] Brock, F. An isoperimetric inequality for eigenvalues of the Stekloff problem, Z. Angew. Math. Mech., Volume 81 (2001) no. 1, pp. 69–71 | DOI | MR | Zbl

[7] Caubet, F.; Dambrine, M.; Kateb, D. Shape optimization methods for the inverse obstacle problem with generalized impedance boundary conditions, Inverse Problems, Volume 29 (2013) no. 11 | DOI | MR | Zbl

[8] Clarke, F.H. Optimization and Nonsmooth Analysis, Canad. Math. Soc. Ser. Monogr. Adv. Texts, John Wiley & Sons, Inc., New York, 1983 (A Wiley–Interscience Publication) | MR | Zbl

[9] Cohen Tannoudji, C.; Diu, B.; Laloe, F. Mécanique Quantique, Hermann, Paris, 1997

[10] Colbois, B.; Dodziuk, J. Riemannian metrics with large λ1 , Proc. Am. Math. Soc., Volume 122 (1994) no. 3, pp. 905–906 | MR | Zbl

[11] Colbois, B.; Dryden, E.B.; El Soufi, A. Bounding the eigenvalues of the Laplace–Beltrami operator on compact submanifolds, Bull. Lond. Math. Soc., Volume 42 (2010) no. 1, pp. 96–108 | DOI | MR | Zbl

[12] Dambrine, M.; Kateb, D. Persistency of wellposedness of Ventcel's boundary value problem under shape deformations, J. Math. Anal. Appl., Volume 394 (2012) no. 1, pp. 129–138 | DOI | MR | Zbl

[13] Delfour, M.C.; Zolésio, J.-P. Shapes and geometries, Analysis, Differential Calculus, and Optimization, Adv. Des. Control, vol. 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001 | MR | Zbl

[14] Desaint, F.R.; Zolésio, J.-P. Manifold derivative in the Laplace–Beltrami equation, J. Funct. Anal., Volume 151 (1997) no. 1, pp. 234–269 | DOI | MR | Zbl

[15] Goldstein, G.R. Derivation and physical interpretation of general boundary conditions, Adv. Differ. Equ., Volume 11 (2006) no. 4, pp. 457–480 | MR | Zbl

[16] Haddar, H.; Joly, P.; Nguyen, H.-M. Generalized impedance boundary conditions for scattering by strongly absorbing obstacles: the scalar case, Math. Models Methods Appl. Sci., Volume 15 (2005) no. 8, pp. 1273–1300 | DOI | MR | Zbl

[17] Henrot, A.; Pierre, M. Variation et optimisation de formes, Une analyse géométrique, A Geometric Analysis, Math. Appl., Mathematics & Applications, vol. 48, Springer, Berlin, 2005 | MR | Zbl

[18] Hersch, J. Caractérisation variationnelle d'une somme de valeurs propres consécutives; généralisation d'inégalités de Pólya–Schiffer et de Weyl, C. R. Acad. Sci. Paris, Volume 252 (1961), pp. 1714–1716 | MR | Zbl

[19] Hersch, J. Quatre propriétés isopérimétriques de membranes sphériques homogènes, C. R. Acad. Sci. Paris Sér. A–B, Volume 270 (1970), pp. A1645–A1648 | MR | Zbl

[20] Hile, G.N.; Xu, Z.Y. Inequalities for sums of reciprocals of eigenvalues, J. Math. Anal. Appl., Volume 180 (1993) no. 2, pp. 412–430 | MR | Zbl

[21] Kennedy, J. A Faber–Krahn inequality for the Laplacian with generalised Wentzell boundary conditions, J. Evol. Equ., Volume 8 (2008) no. 3, pp. 557–582 | DOI | MR | Zbl

[22] Lemrabet, K.; Teniou, D. Vibrations d'une plaque mince avec raidisseur sur le bord, Maghreb Math. Rev., Volume 2 (1992) no. 1, pp. 27–41 | MR

[23] Nédélec, J.-C. Acoustic and electromagnetic equations, Integral Representations for Harmonic Problems, Appl. Math. Sci., vol. 144, Springer-Verlag, New York, 2001 | MR | Zbl

[24] Ortega, J.H.; Zuazua, E. Generic simplicity of the eigenvalues of the Stokes system in two space dimensions, Adv. Differ. Equ., Volume 6 (2001) no. 8, pp. 987–1023 | MR | Zbl

[25] Stein, E.M.; Weiss, G. Introduction to Fourier Analysis on Euclidean Spaces, Princeton Math. Ser., vol. 32, Princeton University Press, Princeton, NJ, 1971 | MR

Cité par Sources :