Cauchy theory for the gravity water waves system with non-localized initial data
Annales de l'I.H.P. Analyse non linéaire, Volume 33 (2016) no. 2, pp. 337-395.

In this article, we develop the local Cauchy theory for the gravity water waves system, for rough initial data which do not decay at infinity. We work in the context of L2-based uniformly local Sobolev spaces introduced by Kato [22]. We prove a classical well-posedness result (without loss of derivatives). Our result implies also a local well-posedness result in Hölder spaces (with loss of d/2 derivatives). As an illustration, we solve a question raised by Boussinesq in [9] on the water waves problem in a canal. We take benefit of an elementary observation to show that the strategy suggested in [9] does indeed apply to this setting.

DOI: 10.1016/j.anihpc.2014.10.004
Keywords: Water-waves, Cauchy problem, Uniformly local Sobolev spaces, Paradifferential calculus
@article{AIHPC_2016__33_2_337_0,
     author = {Alazard, T. and Burq, N. and Zuily, C.},
     title = {Cauchy theory for the gravity water waves system with non-localized initial data},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {337--395},
     publisher = {Elsevier},
     volume = {33},
     number = {2},
     year = {2016},
     doi = {10.1016/j.anihpc.2014.10.004},
     zbl = {1339.35227},
     mrnumber = {3465379},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2014.10.004/}
}
TY  - JOUR
AU  - Alazard, T.
AU  - Burq, N.
AU  - Zuily, C.
TI  - Cauchy theory for the gravity water waves system with non-localized initial data
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 337
EP  - 395
VL  - 33
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2014.10.004/
DO  - 10.1016/j.anihpc.2014.10.004
LA  - en
ID  - AIHPC_2016__33_2_337_0
ER  - 
%0 Journal Article
%A Alazard, T.
%A Burq, N.
%A Zuily, C.
%T Cauchy theory for the gravity water waves system with non-localized initial data
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 337-395
%V 33
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2014.10.004/
%R 10.1016/j.anihpc.2014.10.004
%G en
%F AIHPC_2016__33_2_337_0
Alazard, T.; Burq, N.; Zuily, C. Cauchy theory for the gravity water waves system with non-localized initial data. Annales de l'I.H.P. Analyse non linéaire, Volume 33 (2016) no. 2, pp. 337-395. doi : 10.1016/j.anihpc.2014.10.004. http://www.numdam.org/articles/10.1016/j.anihpc.2014.10.004/

[1] Alazard, Thomas; Burq, Nicolas; Zuily, Claude On the water-wave equations with surface tension, Duke Math. J., Volume 158 (2011) no. 3, pp. 413–499 | MR | Zbl

[2] Alazard, Thomas; Burq, Nicolas; Zuily, Claude On the Cauchy problem for gravity water waves, Invent. Math., Volume 198 (2014) no. 1, pp. 71–163 | MR

[3] Alazard, Thomas; Burq, Nicolas; Zuily, Claude Strichartz estimates and the Cauchy problem for the gravity water waves equations | arXiv | DOI | Zbl

[4] Alazard, Thomas; Métivier, Guy Paralinearization of the Dirichlet to Neumann operator, and regularity of three-dimensional water waves, Commun. Partial Differ. Equ., Volume 34 (2009) no. 10–12, pp. 1632–1704 | MR | Zbl

[5] Alinhac, Serge Paracomposition et opérateurs paradifférentiels, Commun. Partial Differ. Equ., Volume 11 (1986) no. 1, pp. 87–121 | MR | Zbl

[6] Alinhac, Serge Existence d'ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Commun. Partial Differ. Equ., Volume 14 (1989) no. 2, pp. 173–230 | MR | Zbl

[7] Bardos, Claude; Lannes, David; Josserand, C.; Saint-Raymond, L. Mathematics for 2d interfaces, Singularities in Mechanics: Formation, Propagation and Microscopic Description, Panor. Synth., vol. 38, 2012 (xxxiv+162 pp)

[8] Bony, Jean-Michel Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. Éc. Norm. Supér. (4), Volume 14 (1981) no. 2, pp. 209–246 | Numdam | MR | Zbl

[9] Boussinesq, Joseph Sur une importante simplification de la théorie des ondes que produisent, à la surface d'un liquide, l'emersion d'un solide ou l'impulsion d'un coup de vent, Ann. Sci. Éc. Norm. Supér. (3), Volume 27 (1910), pp. 9–42 | JFM | Numdam | MR

[10] Castro, Angel; Córdoba, Diego; Fefferman, Charles; Gancedo, Francisco; Gómez-Serrano, Javier Splash singularity for water waves, Proc. Natl. Acad. Sci., Volume 109 (January 17, 2012) no. 3, pp. 733–738 | MR | Zbl

[11] Castro, Angel; Lannes, David Well-posedness and shallow-water stability for a new Hamiltonian formulation of the water waves equations with vorticity | arXiv | DOI | Zbl

[12] Craig, Walter An existence theory for water waves and the Boussinesq and Korteweg–de Vries scaling limits, Commun. Partial Differ. Equ., Volume 10 (1985) no. 8, pp. 787–1003 | MR | Zbl

[13] Craig, Walter; Nicholls, David P. Travelling two and three dimensional capillary gravity water waves, SIAM J. Math. Anal., Volume 32 (2000) no. 2, pp. 323–359 (electronic) | MR | Zbl

[14] Craig, W.; Sulem, C.; Sulem, P.-L. Nonlinear modulation of gravity waves: a rigorous approach, Nonlinearity, Volume 5 (1992) no. 2, pp. 497–522 | DOI | MR | Zbl

[15] Dalibard, A.-L.; Prange, C. Well-posedness of the Stokes–Coriolis system in the half-space over a rough surface | arXiv | DOI | Zbl

[16] Favre, H. Etude théorique et expérimentale des ondes de translation dans les canaux découverts, Dunod, Paris, 1935

[17] Fefferman, Charles; Stein, Elias Hp spaces of several variables, Acta Math., Volume 129 (1972) no. 1, pp. 137–193 | MR | Zbl

[18] Gérard-Varet, David; Masmoudi, Nader Relevance of the slip condition for fluid flows near an irregular boundary, Commun. Math. Phys., Volume 295 (2010) no. 1, pp. 99–137 | MR | Zbl

[19] Germain, Pierre; Masmoudi, Nader; Shatah, Jalal Global solutions for the gravity water waves equation in dimension 3, Ann. Math. (2), Volume 175 (2012) no. 2, pp. 691–754 | MR | Zbl

[20] Grisvard, Pierre Elliptic Problems in Non Smooth Domains, Pitman, 1985 | MR

[21] Iooss, Gérard; Plotnikov, Pavel I. Small divisor problem in the theory of three-dimensional water gravity waves, Mem. Am. Math. Soc., Volume 200 (2009) no. 940 (viii+128 pp) | MR | Zbl

[22] Kato, Tosio The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., Volume 58 (1975) no. 3, pp. 181–205 | MR | Zbl

[23] Lannes, David The Water Waves Problem: Mathematical Analysis and Asymptotics, Math. Surv. Monogr., vol. 188, American Mathematical Society, Providence, RI, 2013 (xx+321 pp) | DOI | MR | Zbl

[24] Lannes, David Well-posedness of the water-waves equations, J. Am. Math. Soc., Volume 18 (2005) no. 3, pp. 605–654 (electronic) | MR | Zbl

[25] Lannes, David A stability criterion for two-fluid interfaces and applications, Arch. Ration. Mech. Anal., Volume 208 (2013) no. 2, pp. 481–567 | MR | Zbl

[26] Lindblad, Hans Well-posedness for the motion of an incompressible liquid with free surface boundary, Ann. Math. (2), Volume 162 (2005) no. 1, pp. 109–194 | MR | Zbl

[27] Lions, Jacques-Louis; Magenes, Enrico Problèmes aux limites non homogènes, vol. 1, Dunod, 1968 | MR | Zbl

[28] Metivier, Guy Para-differential Calculus and Applications to the Cauchy Problem for Nonlinear Systems, Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series, vol. 5, Edizioni della Normale, Pisa, 2008 | MR | Zbl

[29] Reeder, John; Shinbrot, Marvin Three-dimensional, nonlinear wave interaction in water of constant depth, Nonlinear Anal., Volume 5 (1981) no. 3, pp. 303–323 | MR | Zbl

[30] Wu, Sijue Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Am. Math. Soc., Volume 12 (1999) no. 2, pp. 445–495 | MR | Zbl

[31] Wu, Sijue Almost global well-posedness of the 2-D full water wave problem, Invent. Math., Volume 177 (2009) no. 1, pp. 45–135 | MR | Zbl

[32] Wu, Sijue Global wellposedness of the 3-D full water wave problem, Invent. Math., Volume 184 (2011) no. 1, pp. 125–220 | MR | Zbl

[33] Zakharov, Vladimir E. Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., Volume 9 (1968) no. 2, pp. 190–194

Cited by Sources: