Angad-Gaur, H. W. K.
The homological dimension of a torsion-free abelian group of finite rank as a module over its ring of endomorphisms
Rendiconti del Seminario Matematico della Università di Padova, Tome 57 (1977) , p. 299-309
Zbl 0404.20045 | MR 526197
URL stable : http://www.numdam.org/item?id=RSMUP_1977__57__299_0

Bibliographie

[1] I.V. Bobylev, Endoprojective dimension of modules, Sibirskii Matematicheskii Zhurnal 16 (1975) no. 4 663-682, 883. MR 379595 | Zbl 0313.16028

[2] A.L.S. Corner, Every countable reduced torsion-free ring is an endomorphism ring, Proc. London Math. Soc. 13 (1963) 687-710. MR 153743 | Zbl 0116.02403

[3] A.J. Douglas and H.K. Farahat, The homological dimension of an abelian group as a module over its ring of endomorphisms, Monatsh. Math. 69 (1965), 294-305; Monatsh. Math. 76 (1972), 109-111; Monatsh. Math. 80 (1975), 37-44. MR 185002 | Zbl 0152.00602

[4] L. Fuchs, Infinite Abelian Groups I, II. Academic Press (1970). MR 255673 | Zbl 0257.20035

[5] J.P. Jans, Rings and Homology. Holt, Rinehert and Winston (1964). MR 163944 | Zbl 0141.02901

[6] I. Kaplansky, Fields and Rings, The University of Chicago Press (1972). MR 349646 | Zbl 1001.16501

[7] F. Richman and E.A. Walker, Homological dimension of abelian groups over their endomorphism rings, Proc. American Math. Soc. 54 (1976), 65-68. MR 393279 | Zbl 0326.20049