@article{M2AN_1992__26_7_793_0,
author = {Bacry, E. and Mallat, S. and Papanicolaou, G.},
title = {A wavelet based space-time adaptive numerical method for partial differential equations},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {793--834},
year = {1992},
publisher = {AFCET - Gauthier-Villars},
address = {Paris},
volume = {26},
number = {7},
mrnumber = {1199314},
zbl = {0768.65062},
language = {en},
url = {https://www.numdam.org/item/M2AN_1992__26_7_793_0/}
}
TY - JOUR AU - Bacry, E. AU - Mallat, S. AU - Papanicolaou, G. TI - A wavelet based space-time adaptive numerical method for partial differential equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1992 SP - 793 EP - 834 VL - 26 IS - 7 PB - AFCET - Gauthier-Villars PP - Paris UR - https://www.numdam.org/item/M2AN_1992__26_7_793_0/ LA - en ID - M2AN_1992__26_7_793_0 ER -
%0 Journal Article %A Bacry, E. %A Mallat, S. %A Papanicolaou, G. %T A wavelet based space-time adaptive numerical method for partial differential equations %J ESAIM: Modélisation mathématique et analyse numérique %D 1992 %P 793-834 %V 26 %N 7 %I AFCET - Gauthier-Villars %C Paris %U https://www.numdam.org/item/M2AN_1992__26_7_793_0/ %G en %F M2AN_1992__26_7_793_0
Bacry, E.; Mallat, S.; Papanicolaou, G. A wavelet based space-time adaptive numerical method for partial differential equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 26 (1992) no. 7, pp. 793-834. https://www.numdam.org/item/M2AN_1992__26_7_793_0/
[1] , A multilevel iterative method for nonlinear elliptic equations, Elliptic Problem Solvers, M. Schultz, Ed., p. 1, Academic Press, New York, 1981. | Zbl
[2] , A block spin construction of ondelettes, Comm. Math. Phys., 110, p. 601, 1987. | MR
[3] and , Local adaptive mesh refinement for shock hydrodynamics, J. Comp. Phys., 82 pp. 64-84, 1989. | Zbl
[4] and , Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations, J. Comp. Phys., 53, No. 3, pp. 484-512, 1984. | Zbl | MR
[5] , On the representation of operators in bases of compactly supported wavelets, Proceedings of the École sur des Problèmes non Linéaires Appliqués, INRIA, Paris, June 1991. | Zbl | MR
[6] , and , Fast wavelet transform and numerical algorithms, Yale University Tech. Report YALE/DCS/RR-696, August 1989.
[7] , Math. Comp., 31, p. 333, 1977, New York, 1981. | Zbl | MR
[8] , Orthonormal bases of compactly supported wavelets, Comm. in Pure Apll. Math., 41, pp. 909-996, November 1988. | Zbl | MR
[9] , , and , Local structure of the self focusing singularity of the nonlinear Schroedinger equation, Physica D, 32, pp. 210-226, 1988. | Zbl | MR
[10] , Ondelettes à localisation exponentielles, J. Math. Pures Appl., 1988. | Zbl | MR
[11] and , Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation, NASA Report, ICASE Report No. 90-83, Dec. 1990.
[12] , Multiresolution approximation and wavelet orthonormal bases of L2, Trans. Amer. Math. Soc. 315, pp. 69-87, Sept. 1989. | Zbl | MR
[13] , A theory for multiresolution signal decomposition : the wavelet representation, IEEE Trans. Pattern Anal. Machine Intell., 11, No. 7, pp. 674-693, July 1989. | Zbl
[14] , Ondelettes et opérateurs, Hermann, Paris 1990. | Zbl | MR
[15] , Ondelettes orthogonales sur un interval, preprint CEREMADE, Université Paris Dauphine, 1991. | MR
[16] , A modified Franklin system and higher-order Systems of Rn as unconditional bases for Hardy spaces, Conference in Harmonie Analysis in Honor of A. Zygmund, 2, pp 475-493, eds. W. Beckner et al., Wadsworth Math. Series. | Zbl
[17] and, Galerkin-wavelets Methods for Two-point Boundary Value Problems, preprint, May 1991. | Zbl
[18] , On the multi-level splittmg of finite element spaces, Numer. Math., 49, pp. 379-412, 1986. | Zbl





