@article{M2AN_1992__26_7_793_0, author = {Bacry, E. and Mallat, S. and Papanicolaou, G.}, title = {A wavelet based space-time adaptive numerical method for partial differential equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, pages = {793--834}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {26}, number = {7}, year = {1992}, zbl = {0768.65062}, mrnumber = {1199314}, language = {en}, url = {http://www.numdam.org/item/M2AN_1992__26_7_793_0/} }
TY - JOUR AU - Bacry, E. AU - Mallat, S. AU - Papanicolaou, G. TI - A wavelet based space-time adaptive numerical method for partial differential equations JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique PY - 1992 DA - 1992/// SP - 793 EP - 834 VL - 26 IS - 7 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1992__26_7_793_0/ UR - https://zbmath.org/?q=an%3A0768.65062 UR - https://www.ams.org/mathscinet-getitem?mr=1199314 LA - en ID - M2AN_1992__26_7_793_0 ER -
Bacry, E.; Mallat, S.; Papanicolaou, G. A wavelet based space-time adaptive numerical method for partial differential equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 26 (1992) no. 7, pp. 793-834. http://www.numdam.org/item/M2AN_1992__26_7_793_0/
[1] A multilevel iterative method for nonlinear elliptic equations, Elliptic Problem Solvers, M. Schultz, Ed., p. 1, Academic Press, New York, 1981. | Zbl 0467.65054
,[2] A block spin construction of ondelettes, Comm. Math. Phys., 110, p. 601, 1987. | MR 895218
,[3] Local adaptive mesh refinement for shock hydrodynamics, J. Comp. Phys., 82 pp. 64-84, 1989. | Zbl 0665.76070
and ,[4] Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations, J. Comp. Phys., 53, No. 3, pp. 484-512, 1984. | MR 739112 | Zbl 0536.65071
and ,[5] On the representation of operators in bases of compactly supported wavelets, Proceedings of the École sur des Problèmes non Linéaires Appliqués, INRIA, Paris, June 1991. | MR 1191143 | Zbl 0766.65007
,[6] Fast wavelet transform and numerical algorithms, Yale University Tech. Report YALE/DCS/RR-696, August 1989.
, and ,[7] MR 431719 | Zbl 0373.65054
, Math. Comp., 31, p. 333, 1977, New York, 1981. |[8] Orthonormal bases of compactly supported wavelets, Comm. in Pure Apll. Math., 41, pp. 909-996, November 1988. | MR 951745 | Zbl 0644.42026
,[9] Local structure of the self focusing singularity of the nonlinear Schroedinger equation, Physica D, 32, pp. 210-226, 1988. | MR 969030 | Zbl 0694.35206
, , and ,[10] Ondelettes à localisation exponentielles, J. Math. Pures Appl., 1988. | MR 964171 | Zbl 0758.42020
,[11] Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation, NASA Report, ICASE Report No. 90-83, Dec. 1990.
and ,[12] Multiresolution approximation and wavelet orthonormal bases of L2, Trans. Amer. Math. Soc. 315, pp. 69-87, Sept. 1989. | MR 1008470 | Zbl 0686.42018
,[13] A theory for multiresolution signal decomposition : the wavelet representation, IEEE Trans. Pattern Anal. Machine Intell., 11, No. 7, pp. 674-693, July 1989. | Zbl 0709.94650
,[14] Ondelettes et opérateurs, Hermann, Paris 1990. | MR 1085487 | Zbl 0694.41037
,[15] Ondelettes orthogonales sur un interval, preprint CEREMADE, Université Paris Dauphine, 1991. | MR 1133374
,[16] A modified Franklin system and higher-order Systems of Rn as unconditional bases for Hardy spaces, Conference in Harmonie Analysis in Honor of A. Zygmund, 2, pp 475-493, eds. W. Beckner et al., Wadsworth Math. Series. | Zbl 0521.46011
,[17] Galerkin-wavelets Methods for Two-point Boundary Value Problems, preprint, May 1991. | Zbl 0771.65050
and ,[18] On the multi-level splittmg of finite element spaces, Numer. Math., 49, pp. 379-412, 1986. | Zbl 0608.65065
,