Fonctions zêta de Selberg et surfaces de géométrie finie
Séminaire de théorie spectrale et géométrie, Volume 8 (1989-1990), pp. 89-94.
@article{TSG_1989-1990__8__89_0,
     author = {Guillop\'e, Laurent},
     title = {Fonctions z\^eta de {Selberg} et surfaces de g\'eom\'etrie finie},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {89--94},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {8},
     year = {1989-1990},
     mrnumber = {1717287},
     zbl = {0757.58039},
     language = {fr},
     url = {http://www.numdam.org/item/TSG_1989-1990__8__89_0/}
}
TY  - JOUR
AU  - Guillopé, Laurent
TI  - Fonctions zêta de Selberg et surfaces de géométrie finie
JO  - Séminaire de théorie spectrale et géométrie
PY  - 1989-1990
SP  - 89
EP  - 94
VL  - 8
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/item/TSG_1989-1990__8__89_0/
LA  - fr
ID  - TSG_1989-1990__8__89_0
ER  - 
%0 Journal Article
%A Guillopé, Laurent
%T Fonctions zêta de Selberg et surfaces de géométrie finie
%J Séminaire de théorie spectrale et géométrie
%D 1989-1990
%P 89-94
%V 8
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/item/TSG_1989-1990__8__89_0/
%G fr
%F TSG_1989-1990__8__89_0
Guillopé, Laurent. Fonctions zêta de Selberg et surfaces de géométrie finie. Séminaire de théorie spectrale et géométrie, Volume 8 (1989-1990), pp. 89-94. http://www.numdam.org/item/TSG_1989-1990__8__89_0/

[l] Agmon S. - On the spectral theory of the laplacian on non-compact hyperbolic manifolds, Séminaire d'équations aux dérivées partielles, Saint-Jean de Monts, 1986. | Numdam | Zbl

[2] Birman M., Krein M. - On the theory of wave operators and scattering operators, Dokl. Akad. Nauk SSSR, 144 ( 1962), 475-478. | MR | Zbl

[3] Effrat I. - Determinants of laplacians on surfaces of finite volume, Commun. Math. Phys., 119 ( 1988), 443-451. | MR | Zbl

[4] Epstein C. - Asymptotics for closed geodesics in a homology class, the finite volume case, Duke Math. J., 55 ( 1987), 717-757. | MR | Zbl

[5] Fried D. - Zeta Functions of Ruelle and Selberg I, Ann. École Normale Sup., 19 ( 1986), 491-517. | Numdam | MR | Zbl

[6] Guillopé L. - Fonctions zêta de Selberg et surfaces de géométrie finie, à paraître, 1990.

[7] Kato T. - Perturbation theory for linear operators, Springer, 1966. | Zbl

[8] Katsuda A., Sunada T. - Homology and closed geodesics in a compact riemann surface, Amer. J. Math., (),. | MR | Zbl

[9] Krein M. - On the trace formule in the theory of perturbation, Mat. Sb, 33 ( 1953), 597-626. | MR

[10] Lalley S. - Renewal theorems in symbolic dynamics, with applications to geodesie flows, noneuclidian tesselations and their fractal limits, Acta Math., 163 ( 1989), 1-55. | MR | Zbl

[11] Mayer D. - Selberg's zeta function for PSL(2,Z) via the thermodynamic formalism for the continued fraction map, prépublication, 1990.

[12] Mazzeo R., Melrose R. - Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Func. Anal., 75 ( 1987), 260-310. | MR | Zbl

[13] Perry P. - The laplace operator on a hyperbolic manifold. II. Eisenstein series and the scattering matrix, J. Reine Angew. Math, 398 ( 1989), 67-91. | MR | Zbl

[14] Phillips R., Sarnak P. - Geodesics in homology classes, Duke Math. J., 55 ( 1987), 287-297. | MR | Zbl

[15] Pollicot M. - Analytic extensions of the zeta functions for surfaces of variable negative curvature, J. Differential Geo., 29 ( 1989), 699-706. | MR | Zbl

[16] Sarnak P. - Determinants of laplacians, Commun. Math. Phys., 110 ( 1987), 113-120. | MR | Zbl

[17] Selberg A. - Harmonic analysis and discontinuous groups in weakly symmetrie riemannian spaces with applications to Dirichlet series, J. Ind. math. Soc, 20 ( 1956), 47-87. | MR | Zbl

[18] Venkov A. - Spectral theory of automophic functions, Proc. Steldov Inst. Math, 153 ( 1981), 1-162. | MR | Zbl

[19] Voros A. - Spectral functions, special functions and the Selberg zeta function, Commun. Math. Phys., 110 ( 1987), 439-465. | MR | Zbl