@article{SPS_1998__32__86_0, author = {Heck, Matthias K.}, title = {Homogeneous diffusions on the {Sierpinski} gasket}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {86--107}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {32}, year = {1998}, mrnumber = {1655146}, zbl = {0917.60073}, language = {en}, url = {http://www.numdam.org/item/SPS_1998__32__86_0/} }
Heck, Matthias K. Homogeneous diffusions on the Sierpinski gasket. Séminaire de probabilités de Strasbourg, Volume 32 (1998), pp. 86-107. http://www.numdam.org/item/SPS_1998__32__86_0/
1. Brownian motion on the Sierpinski gasket. Probab. Theory Related Fields 79, 543-623. | MR | Zbl
and (1988).2. Harmonic analysis and the theory of probability, Univ. of California Press, Berkeley. | MR | Zbl
(1955).3. Random walks and diffusions on fractals. In: Kesten, H. (ed.)Percolation theory and ergodic theory of infinite particle systems. (IMA Math. Appl., vol.8.) Springer, New York, p. 121-129. | MR | Zbl
(1987).4. Asymptotically one-dimensional diffusions on the Sierpinski gasket and the abc-gaskets. Probab. Theory Related Fields 100, 85-116. | MR | Zbl
, and (1994).5. A perturbation result for the asymptotic behavior of matrix powers. J. Theoret. Probability 9, 647-658. | MR | Zbl
(1996).6. A first course in stochastic processes. Academic Press, New York. | MR | Zbl
(1966).7. Construction and some properties of a class of non-symmetric diffusion processes on the Sierpinski gasket. In: Elworthy, K.D. and Ikeda, N. Asymptotic Problems in Probability Theory, Pitman. | Zbl
8. A diffusion process on a fractal. In: Ito, K. and Ikeda, N. (eds.) Symposium on Probabilistic Methods in Mathematical Physics. Proceedings Taniguchi Symposium, Katata 1985. Academic Press, Amsterdam, p. 251-274. | MR | Zbl
(1987).9. Brownian motion on nested fractals. Mem. Amer. Math. Soc. 420. | MR | Zbl
(1990).10. Multi type branching processes, American Elsevier Publishing Company, New York.
(1971).