@article{SPS_1991__25__162_0,
author = {M\'emin, Jean and S{\l}ominski, Leszek},
title = {Condition {UT} et stabilit\'e en loi des solutions d'\'equations diff\'erentielles stochastiques},
journal = {S\'eminaire de probabilit\'es},
pages = {162--177},
year = {1991},
publisher = {Springer - Lecture Notes in Mathematics},
volume = {25},
zbl = {0746.60063},
language = {fr},
url = {https://www.numdam.org/item/SPS_1991__25__162_0/}
}
TY - JOUR AU - Mémin, Jean AU - Słominski, Leszek TI - Condition UT et stabilité en loi des solutions d'équations différentielles stochastiques JO - Séminaire de probabilités PY - 1991 SP - 162 EP - 177 VL - 25 PB - Springer - Lecture Notes in Mathematics UR - https://www.numdam.org/item/SPS_1991__25__162_0/ LA - fr ID - SPS_1991__25__162_0 ER -
%0 Journal Article %A Mémin, Jean %A Słominski, Leszek %T Condition UT et stabilité en loi des solutions d'équations différentielles stochastiques %J Séminaire de probabilités %D 1991 %P 162-177 %V 25 %I Springer - Lecture Notes in Mathematics %U https://www.numdam.org/item/SPS_1991__25__162_0/ %G fr %F SPS_1991__25__162_0
Mémin, Jean; Słominski, Leszek. Condition UT et stabilité en loi des solutions d'équations différentielles stochastiques. Séminaire de probabilités, Tome 25 (1991), pp. 162-177. https://www.numdam.org/item/SPS_1991__25__162_0/
[1] : Weak convergence of the variations, iterated integrals and Doleans-Dade exponentials of sequences of semimartingales.Ann. Probab. 16, 246-250 (1988). | Zbl | MR
[2] , : Probabilités et potentiel ; tome 2. Paris, Hermann 1980. | MR
[3] : Approximation of stochastic integral equations by martingale difference arrays. (1988) preprint.
[4] , : Weak and strong solutions of stochastic differential equations: existence and stability. in "Stochastic Integrals" édité par D. Williams, proc. LMS Durham Symp. 1980. Lect. Notes in Maths 851, Springer, Berlin Heidelberg, New-York (1981). | Zbl | MR
[5] , : Limit theorems for stochastic processes. Springer Verlag, Berlin, (1987). | Zbl | MR
[6] , , : Convergence en loi des suites d'intégrales stochastiques sur l'espace D1 de Skorokhod. Probab. Th. Rel. Fields 81, 111-137 (1989). | Zbl | MR
[7] , : Weak limit theorems for stochastic integrals and stochastic differential equations. preprint 1989, à paraitre aux : Annals of Probability (1990). | Zbl | MR
[8] : Théorèmes limite fonctionnels pour les processus de vraisemblance (cadre asymptotiquement non gaussien). Public. IRMAR, Rennes 1986. | Zbl | MR | Numdam
[9] , : Tightness criteria for laws of semimartingales. Ann. Inst. H. Poicaré, Sec. B 20, 353-372 (1984). | Zbl | MR | Numdam
[10] : Stability of strong solutions of stochastic differential equations. Stochastic Processes and their Applications 31, 173-202 (1989). | Zbl | MR
[11] : Martingale difference arrays and stochastic integrals. Probab. Th. Rel. Fields 72, 83-98 (1986). | Zbl | MR
[12] : Lois de semimartingales et critères de compacité. Séminaires de Probabilités XIX, Lect. Notes in Math. vol 1123, Springer, Berlin Heidelberg New-York (1985). | Zbl | MR | Numdam | EuDML
[13] : A stability theorem for stochastic differential equations and application to stochastic control problems. Stochastics 13, 257-279 (1984). | Zbl | MR
[14] : A stability theorem for stochastic differential equations with application to storage processes, random walks and optimal stochastic control problems. Stochastic Processes and their Applications 23 (1986). | Zbl | MR
[15] : An extension of a Yamada Theorem. Preprint 1989, à paraitre aux Liet. Mat. Rink. XXX 1990. | MR
[16] : Semimartingales. de Gruyter Studies in Mathematics 2. W de Gruyter; Berlin, New York. 1982. | Zbl | MR






