Spectral representation of isotropic random currents
Séminaire de probabilités de Strasbourg, Volume 23 (1989), pp. 503-526.
@article{SPS_1989__23__503_0,
     author = {Wong, Eugene and Zakai, Moshe},
     title = {Spectral representation of isotropic random currents},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {503--526},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {23},
     year = {1989},
     mrnumber = {1022934},
     zbl = {0739.60042},
     language = {en},
     url = {http://www.numdam.org/item/SPS_1989__23__503_0/}
}
TY  - JOUR
AU  - Wong, Eugene
AU  - Zakai, Moshe
TI  - Spectral representation of isotropic random currents
JO  - Séminaire de probabilités de Strasbourg
PY  - 1989
SP  - 503
EP  - 526
VL  - 23
PB  - Springer - Lecture Notes in Mathematics
UR  - http://www.numdam.org/item/SPS_1989__23__503_0/
LA  - en
ID  - SPS_1989__23__503_0
ER  - 
%0 Journal Article
%A Wong, Eugene
%A Zakai, Moshe
%T Spectral representation of isotropic random currents
%J Séminaire de probabilités de Strasbourg
%D 1989
%P 503-526
%V 23
%I Springer - Lecture Notes in Mathematics
%U http://www.numdam.org/item/SPS_1989__23__503_0/
%G en
%F SPS_1989__23__503_0
Wong, Eugene; Zakai, Moshe. Spectral representation of isotropic random currents. Séminaire de probabilités de Strasbourg, Volume 23 (1989), pp. 503-526. http://www.numdam.org/item/SPS_1989__23__503_0/

[1] H. Flanders, Differential Forms, Academic Press, 1963. | MR | Zbl

[2] K. Ito, "isotropic random current," Proceedings, Third Berkeley Symp. on Math. Stat. and Prob., 1956, pp. 125-32. | MR | Zbl

[3] S. Ito, "On the canonical form of turbulence," Nagoya Math. J., vol. 2, 1951, pp. 83-92. | MR | Zbl

[4] V. Mandrekar, "Markov properties of random fields," Probabilistic Analysis and Related Topics, vol. 3, pp. 161-193, A.T. Bharucha-Reid (ed.), Academic Press, 1983. | MR | Zbl

[5] G. Derham, Differentiable Manifolds, Springer-Verlag, 1982. | Zbl

[6] Y.A. Rozanov, Markov Random Fields, Academic Press, 1982. | MR

[7] L. Schwartz, Theory des distributions, Herman, 1966.

[8] C. Von Westenholtz, Differential Forms in Mathematical Physics, North Holland, 1981. | MR | Zbl

[9] E. Wong and B. Hajek, Stochastic Processes in Engineering Systems, Springer-Verlag, 1985. | MR | Zbl

[10] E. Wong and M. Zakai, "Markov processes on the plane," Stochastics, vol. 15, 1985, pp. 311-333. | MR | Zbl

[11] E. Wong and M. Zakai, "Martingale differential forms," Prob. Th. Rel. Fields, vol. 74, 1987, pp. 429-453. | MR | Zbl

[12] E. Wong and M. Zakai, "Isotropic Gauss Markov currents," to appear in Prob. Th. Rel. Fields. | MR | Zbl

[13] A.M. Yaglom, "Some classes of random fields in n-dimensional space related to stationary random processes , "Theory of Probability and Its Applications, vol. 2, 1957, pp. 273-320.

[14] A.M. Yaglom, Correlation theory of stationary and related random functions. Vol. I, II. Springer-Verlag, New York, 1987 | Zbl