Dans cet exposé nous présentons plusieurs résultats récents sur le problème de la détermination d’un champ de jauge sur par sa transformée de Radon non-Abélienne le long de droites orientées. Cet exposé est basé en premier lieu sur le travail [R.Novikov, On determination of a gauge field on from its non-abelian Radon transform along oriented straight lines, Journal of the Inst. of Math. Jussieu (2002) 1(4), 559-629].
@article{SEDP_2003-2004____A16_0, author = {Novikov, Roman G.}, title = {D\'etermination d{\textquoteright}un champ de jauge sur $\mathbb{R}^d$ par sa transform\'ee de {Radon} {non-Ab\'elienne}}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:16}, pages = {1--7}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2003-2004}, language = {fr}, url = {http://www.numdam.org/item/SEDP_2003-2004____A16_0/} }
TY - JOUR AU - Novikov, Roman G. TI - Détermination d’un champ de jauge sur $\mathbb{R}^d$ par sa transformée de Radon non-Abélienne JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:16 PY - 2003-2004 SP - 1 EP - 7 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_2003-2004____A16_0/ LA - fr ID - SEDP_2003-2004____A16_0 ER -
%0 Journal Article %A Novikov, Roman G. %T Détermination d’un champ de jauge sur $\mathbb{R}^d$ par sa transformée de Radon non-Abélienne %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:16 %D 2003-2004 %P 1-7 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_2003-2004____A16_0/ %G fr %F SEDP_2003-2004____A16_0
Novikov, Roman G. Détermination d’un champ de jauge sur $\mathbb{R}^d$ par sa transformée de Radon non-Abélienne. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2003-2004), Talk no. 16, 7 p. http://www.numdam.org/item/SEDP_2003-2004____A16_0/
[1] G.Eskin, On the non-abelian Radon transform, Preprint 2004 (arXiv :math.AP/0403447) | MR | Zbl
[2] A.S.Fokas and T.A.Ioannidou, The inverse spectral theory for the Ward equation and the 2+1 chiral model, Commun. Appl. Analysis 5 (2001), 235-246 | MR | Zbl
[3] A.S.Fokas and R.G.Novikov, Discrete analogues of -equation and of Radon transform, C.R.Acad.Sci.,Paris 313 (1991), 75-80 | MR | Zbl
[4] J.-P.Guillement, F.Jauberteau, L.Kunyansky, R.Novikov and R.Trebossen, On single-photon emission computed tomography imaging based on an exact formula for the nonuniform attenuation correction, Inverse Problems 18 (2002), L11-L19 | MR | Zbl
[5] S.V.Manakov and V.E.Zakharov, Three-dimensional model of relativistic-invariant field theory, integrable by inverse scattering transform, Lett. Math. Phys. 5 (1981), 247-253 | MR
[6] F.Natterer, The mathematics of computerized tomograpy, (Teubner, Stuttgart and Wiley, Chichester, 1986) | MR | Zbl
[7] R.G.Novikov, Small angle scattering and X-ray transform in classical mechanics, Ark. Mat. 37 (1999), 141-169 | MR | Zbl
[8] R.G.Novikov, On determination of a gauge field on from non-abelian Radon transform along oriented straight lines, Journal of the Inst. of Math. Jussieu 1 (2002), 559-629 | MR | Zbl
[9] R.G.Novikov, An inversion formula for the attenuated X-ray transformation, Ark. Mat. 40 (2002), 145-167 | MR | Zbl
[10] R.G.Novikov, On the range characterization for the two-dimensional attenuated X-ray transformation, Inverse Problems 18 (2002) 677-700 | MR | Zbl
[11] J.Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Nat. K1 69 (1917), 262-267 | MR
[12] V.A.Sharafutdinov, On an inverse problem of determining a connection on a vector bundle, J. Inv. Ill-Posed Problems 8 (2000), 51-88 | MR | Zbl
[13] J.Villarroel, The inverse problem for Ward’s system, Stud. Appl. Math. 83 (1990), 211-222 | Zbl
[14] R.S.Ward, Soliton solutions in an integrable chiral model in 2+1 dimensions,J.Math.Phys 29 (1988), 386-389 | MR | Zbl
[15] L.B.Wertgeim, Integral geometry with matrix weight and a nonlinear problem of recovering matrices, Dokl. Akad. Nauk SSSR 319 (1991), 531-534 (in Russian) | Zbl