Weak solutions of incompressible Euler equations with decreasing energy
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1996-1997), Talk no. 16, 9 p.
Shnirelman, Alexander I. 1

1 School of Mathematical Sciences, Tel-Aviv University, and IHES
@article{SEDP_1996-1997____A16_0,
     author = {Shnirelman, Alexander I.},
     title = {Weak solutions of incompressible {Euler} equations with decreasing energy},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:16},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {1996-1997},
     mrnumber = {1482822},
     zbl = {0913.35110},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_1996-1997____A16_0/}
}
TY  - JOUR
AU  - Shnirelman, Alexander I.
TI  - Weak solutions of incompressible Euler equations with decreasing energy
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:16
PY  - 1996-1997
DA  - 1996-1997///
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/item/SEDP_1996-1997____A16_0/
UR  - https://www.ams.org/mathscinet-getitem?mr=1482822
UR  - https://zbmath.org/?q=an%3A0913.35110
LA  - en
ID  - SEDP_1996-1997____A16_0
ER  - 
%0 Journal Article
%A Shnirelman, Alexander I.
%T Weak solutions of incompressible Euler equations with decreasing energy
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:16
%D 1996-1997
%I Centre de mathématiques Laurent Schwartz, École polytechnique
%G en
%F SEDP_1996-1997____A16_0
Shnirelman, Alexander I. Weak solutions of incompressible Euler equations with decreasing energy. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1996-1997), Talk no. 16, 9 p. http://www.numdam.org/item/SEDP_1996-1997____A16_0/

[1] Y. Brenier, The Least Action Principle and the related concept of generalized flows for incompressible perfect fluids. J. Amer. Math Soc., 2:2 (1989). | MR | Zbl

[2] Y. Brenier, A dual Least Action Principle for the motion of an ideal incompressible fluid. Arch. Rat. Mech. Anal., v.122 (1993), no. 4, 323-351. | MR | Zbl

[3] P. Constantin, W. E, E. Titi, Onsager’s conjecture on the energy conservation for the solutions of the Euler equations. Comm. Math. Phys., v.165 (1994), 207-209. | MR | Zbl

[4] G. Eyink, Energy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local energy transfer. Physica D, v. 78 (1994), no. 3-4, 222-240. | MR | Zbl

[5] L. Onsager, Statistical hydromechanics. Nuovo Cimento (Supplemento), v.6 (1949), 279. | MR

[6] V. Scheffer, An inviscid flow with compact support in space-time. J. Geom. Anal., v.3 (1993), no. 4, 343-401. | MR | Zbl

[7] A. Shnirelman, On the geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid. Math. USSR Sbornik, v. 56 (1987), no. 1, 79-105. | Zbl

[8] A. Shnirelman, Generalized fluid flows, their approximation and applications. Geom. And Funct. Anal., v.4 (1994), no. 5, 586-620. | EuDML | MR | Zbl

[9] A.Shnirelman, On the non-uniqueness of weak solution of the Euler equations. Preprint IHES, 1996. See also Journees “Equations aux Derivees Partielles” (Saint-Jean-de-Monts, 1996), Exp. No. XVIII, Ecole Polytechnic, Palaiseau, 1996. | EuDML | Numdam | MR | Zbl