The Role of Green’s Functions in Inverse Scattering at Fixed Energy
Séminaire Équations aux dérivées partielles (Polytechnique) (1996-1997), Talk no. 15, 5 p.
@article{SEDP_1996-1997____A15_0,
     author = {Ralston, James},
     title = {The Role of Green's Functions in Inverse Scattering at Fixed Energy},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {1996-1997},
     note = {talk:15},
     zbl = {1055.81629},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_1996-1997____A15_0}
}
Ralston, James. The Role of Green’s Functions in Inverse Scattering at Fixed Energy. Séminaire Équations aux dérivées partielles (Polytechnique) (1996-1997), Talk no. 15, 5 p. http://www.numdam.org/item/SEDP_1996-1997____A15_0/

[A] Agmon,S. “Spectral properties of Schrödinger operators”, Annali di Pisa, Serie IV, 2, 151-218(1975) | Numdam | Zbl 0315.47007

[ER] Eskin, G., Ralston, J. “Inverse scattering problem for the Schrödinger equation with magnetic potential at a fixed energy”,Commun. Math. Phys. 173, 199-224(1995) | Zbl 0843.35133

[F] Faddeev, L.D. “The inverse problem of quantum scattering II”, J. Sov. Math. 5, 334-396(1976) | Zbl 0373.35014

[H] Hörmander, L. “Uniqueness theorems for second order differential equations”, C.P.D.E.8, 21-64(1983) | Zbl 0546.35023

[I] Isozaki, H. “Multi-dimensional inverse scattering theory for Schrödinger operators”, Reviews in Math. Phys. 8, 591-622(1996) | Zbl 0859.35083

[NU] Nakamura, G., Uhlmann, G. “Global uniqueness for an inverse boundary value problem arising in elasticity”, Invent. Math. 118, 457-474(1994) | Zbl 0814.35147

[NSU] Nakamura, G., Sun, Z., Uhlmann, G. “Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field”, Math. Ann. 303,377-388(1995) | Zbl 0843.35134

[N] Novikov, R,G, “The inverse scattering problem at fixed energy for the three dimensional Schrödinger operator with an exponentially decreasing potential”, Commun Math, Phys. 161 569-595(1994) | Zbl 0803.35166

[S] Sun, Z. “An inverse boundary value problem for Schrödinger operator with vector potentials, Trans. AMS 338(2), 953-969(1993) | Zbl 0795.35143