Neumann operator for wave equation in a half space and microlocal orders of singularities along the boundary
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1992-1993), Exposé no. 16, 6 p.
@article{SEDP_1992-1993____A16_0,
     author = {Miyatake, S.},
     title = {Neumann operator for wave equation in a half space and microlocal orders of singularities along the boundary},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:16},
     publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
     year = {1992-1993},
     zbl = {0874.35063},
     mrnumber = {1240557},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_1992-1993____A16_0/}
}
Miyatake, S. Neumann operator for wave equation in a half space and microlocal orders of singularities along the boundary. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1992-1993), Exposé no. 16, 6 p. http://www.numdam.org/item/SEDP_1992-1993____A16_0/

[1] L. Hörmander - The analysis of linear partial differencial operators III, Springer-Verlag, (1985). | MR 781536 | Zbl 0601.35001

[2] H. Kumano- go - Pseudodifferential and Fourier integral operators with applications fundamental solutions to hyperbolic equations, Lecture note (1983).

[3] S. Miyatake - Mixed problems for hyperbolic equations of second order with first order complex boundary operators, J. Math. Kyoto Univ. (1975). | MR 430542 | Zbl 0337.35047

[4] S. Miyatake - Microlocal orders of singularities for distributions and an application to Fourier integral operators,J. Math. Kyoto Univ. 29, (1989). | MR 1015875 | Zbl 0721.35096

[5] S. Miyatake - Microlocal orders of singularities for distributions and trace formulas of hyperbolic type, Lecture note in Trieste (1993). | MR 1340237 | Zbl 0826.35149

[6] R. Sakamoto - Mixed problem for hyperbolic equation I and II, J. Math. Kyoto Univ. 8, (1970). | Zbl 0203.10001