The lifespan of 3D compressible flow
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1991-1992), Exposé no. 5, 10 p.
@article{SEDP_1991-1992____A5_0,
     author = {Sideris, Thomas C.},
     title = {The lifespan of 3D compressible flow},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:5},
     publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
     year = {1991-1992},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_1991-1992____A5_0/}
}
Sideris, Thomas C. The lifespan of 3D compressible flow. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1991-1992), Exposé no. 5, 10 p. http://www.numdam.org/item/SEDP_1991-1992____A5_0/

[1] Grauer, R. and T.C. Sideris. Numerical solution of 3D incompressible ideal fluids with swirl. To appear in Phys. Rev. Lett.

[2] John, F. and S. Klainerman. Almost global existence to nonlinear wave equations in three space dimensions. Comm. Pure Appl. Math. 37 (1984), 443-455. | MR 745325 | Zbl 0599.35104

[3] Klainerman, S. Remarks on the global Sobolev inequalities in the Minkowski space IRn+1. Comm. Pure Appl. Math. 38 (1985), 631-641. | MR 803252 | Zbl 0597.35100

[4] Klainerman, S. and A. Majda. Compressible and Incompressible Fluids. Comm. Pure Appl. Math. 35 (1982), 629-651. | MR 668409 | Zbl 0478.76091

[5] Majda, A. Compressible fluid flow and systems of conservation laws in several space dimensions. Appl. Math. Sciences. 53 New York: Springer (1984). | Zbl 0537.76001

[6] Sideris, T.C. Formation of singularities in three-dimensional compressible fluids. Comm. Math. Phys. 101 (1985), 475-485. | MR 815196 | Zbl 0606.76088

[7] Sideris, T.C. The lifespan of smooth solutions to the three-dimensional compressible Euler equations and the incompressible limit. Indiana Univ. Math. J. 40 (1991), 535-550. | MR 1119187 | Zbl 0736.35087

[8] Ukai, S. The incompressible limit and the initial layer of the compressible Euler equation. J. Math. Kyoto Univ. 26 (1986), 497-506. | MR 849223 | Zbl 0618.76074