Sur l'équation de Hill analytique
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1984-1985), Exposé no. 16, 12 p.
@article{SEDP_1984-1985____A16_0,
     author = {Grigis, Alain},
     title = {Sur l'\'equation de Hill analytique},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:16},
     publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
     year = {1984-1985},
     zbl = {0567.34023},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_1984-1985____A16_0/}
}
Grigis, A. Sur l'équation de Hill analytique. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1984-1985), Exposé no. 16, 12 p. http://www.numdam.org/item/SEDP_1984-1985____A16_0/

[1] J. Avron, B. Simon: The asymptotics of the Gap in the Mathieu equation, Annals of Physics 134, (1981) 76-84. | MR 626698 | Zbl 0464.34020

[2] E.A. Coddington, N. Levinson: Theory of ordinary differential equations, Mac Graw Hill (1955). | MR 69338 | Zbl 0064.33002

[3] M.S.P. Eastham: The spectral theory of periodic differential equation, Scottish Academic Press (1973). | Zbl 0287.34016

[4] J. Ecalle: Cinq applications des fonctions resurgentes, Prepublications d'Orsay (1984).

[5] M.A. Evgrafov, M.V. Fedoryuk: Asymptotic behaviour as λ → ∞ of the solutions of the equation W(z) - p(z,λ)W(z) = 0 in the complex z-plane, Russian Math. Surveys 21 (1966) 1-48. | Zbl 0173.33801

[6] J. Garnett, E. Trubowitz: Gaps and bands of one dimensional periodic Schrödinger operators, Comment. Math. Helvetici 59 (1984) 258-312. | MR 749109 | Zbl 0554.34013

[7] A. Grigis: Sur l'isospectralité des potentiels périodiques dans IRn (d'après G. Eskin, J. Ralston, E. Trubowitz) Séminaire d'Analyse de l'Université de Nantes (1983-84) exposé n°1 .

[8] E. Harrel: American J. of Maths, to appear.

[9] H.P. Mackean, E. Trubowitz: Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points, CPAM 29 (1976) 143-226. | MR 427731 | Zbl 0339.34024

[10] W. Magnus, S. Winkler: Hill's equation, Interscience Publishers (1966). | Zbl 0158.09604

[11] M. Reed, B. Simon: Methods of Modern Mathematical physics, IV, Academic Press (1978). | MR 751959 | Zbl 0401.47001

[12] Y. Sibuya: Global theory of a second order linear ordinary differential equation with a polynomial coefficient, North Holland (1975). | MR 486867 | Zbl 0322.34006

[13] E. Trubowitz: The inverse problem for periodic potentials, CPAM 30 (1977) 321-337. | MR 430403 | Zbl 0403.34022

[14] A. Voros: The return of the quartic oscillator. The complex WKB method, Ann. Inst. Henri Poincaré, vol. 29, n°3 (1983) 211-338. | Numdam | MR 729194 | Zbl 0526.34046

[15] W. Wasow: Asymptotic expansions for ordinary differential equations, Krieger (1976). | MR 460820 | Zbl 0169.10903