Some fixed points theorems for multi-valued weakly uniform increasing operators
Rendiconti del Seminario Matematico della Università di Padova, Volume 120  (2008), p. 217-226
@article{RSMUP_2008__120__217_0,
     author = {Altun, Ishak and Turkoglu, Duran},
     title = {Some fixed points theorems for multi-valued weakly uniform increasing operators},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {120},
     year = {2008},
     pages = {217-226},
     mrnumber = {2492658},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_2008__120__217_0}
}
Altun, Ishak; Turkoglu, Duran. Some fixed points theorems for multi-valued weakly uniform increasing operators. Rendiconti del Seminario Matematico della Università di Padova, Volume 120 (2008) , pp. 217-226. http://www.numdam.org/item/RSMUP_2008__120__217_0/

[1] A. Brtondsted, On a lemma of Bishop and Phelps, Pacific J. Math., 55 (1974), pp. 335-341. | MR 380343 | Zbl 0248.46009

[2] K. Deimling, Multivalued Differential Equations, De Gruyter, Berlin, 1992. | MR 1189795 | Zbl 0760.34002

[3] B. C. Dhage - D. O'Regan - R. P. Agarwal, Common fixed point theorems for a pair of countably condensing mappings in ordered Banach spaces, J. Appl. Math. Stochastic Anal, 16, 3 (2003), pp. 243-248. | MR 2010512 | Zbl 1068.47071

[4] Y. Feng - S. Liu, Fixed point theorems for multi-valued increasing operators in partial ordered spaces, Soochow J. Math., 30, 4 (2004), pp. 461-469. | MR 2106065 | Zbl 1084.47046

[5] D. Guo - V. Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, New York, 1988. | MR 959889 | Zbl 0661.47045

[6] S. Heikkila - V. Lakshmikantham, Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations, Dekker, New York, 1994. | MR 1280028 | Zbl 0804.34001

[7] N. B. Huy, Fixed points of increasing multivalued operators and an application to the discontinuous elliptic equations, Nonlinear Anal. 51, 4 (2002), pp. 673-678. | MR 1920344 | Zbl 1157.47314

[8] N. B. Huy - N. H. Khanh, Fixed point for multivalued increasing operators, J. Math. Anal. Appl., 250, 1 (2000), pp. 368-371. | MR 1893895 | Zbl 0973.47043

[9] J. Jachymski, Converses to fixed point theorems of Zermelo and Caristi, Nonlinear Anal., 52, 5 (2003), pp. 1455-1463. | MR 1942571 | Zbl 1030.54033

[10] J. Jachymski, Caristi's fixed point theorem and selections of set-valued contractions, J. Math. Anal. Appl., 227, 1 (1998), pp. 55-67. | MR 1652882 | Zbl 0916.47044

[11] W. A. Kirk - L. M. Saliga, The Brézis-Browder order principle and extensions of Caristi's theorem, Proceedings of the Third World Congress of Nonlinear Analysts, Part 4 (Catania, 2000), Nonlinear Anal., 47, 4 (2001), pp. 2765-2778. | MR 1972399 | Zbl 1042.54506

[12] D. Turkoglu - R. P. Agarwal - D. O'Regan - I. Altun, Some fixed point theorems for single-valued and multi-valued countably condensing weakly uniform isotone mappings, PanAmer. Math. J., 1 (1) (2005), pp. 57-68. | MR 2111269 | Zbl 1083.47042