@article{RSMUP_1984__71__131_0, author = {Bertotti, M. L. and Moauro, V.}, title = {Bifurcation and total stability}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {131--139}, publisher = {Seminario Matematico of the University of Padua}, volume = {71}, year = {1984}, mrnumber = {769432}, zbl = {0551.34017}, language = {en}, url = {http://www.numdam.org/item/RSMUP_1984__71__131_0/} }
TY - JOUR AU - Bertotti, M. L. AU - Moauro, V. TI - Bifurcation and total stability JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1984 SP - 131 EP - 139 VL - 71 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_1984__71__131_0/ LA - en ID - RSMUP_1984__71__131_0 ER -
%0 Journal Article %A Bertotti, M. L. %A Moauro, V. %T Bifurcation and total stability %J Rendiconti del Seminario Matematico della Università di Padova %D 1984 %P 131-139 %V 71 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_1984__71__131_0/ %G en %F RSMUP_1984__71__131_0
Bertotti, M. L.; Moauro, V. Bifurcation and total stability. Rendiconti del Seminario Matematico della Università di Padova, Volume 71 (1984), pp. 131-139. http://www.numdam.org/item/RSMUP_1984__71__131_0/
[1] Liapunov direct method in approaching bifurcation problems, Annali Mat. pur. appl., (IV) cviii (1976), pp. 211-225. | MR | Zbl
- - - ,[2] Generalized Hopf bifurcation and related stabitity problems, Proc. Conter. « Qualitative Theory of Diff. Eqs. » Szeged, Hungary (1979), Colloquia Math. Soc. Janof Poljai, 30. | Zbl
,[3] Contributions to stabitity theory, Ann. Math., 64 (1956), pp. 182-206. Correction, Ann. Math., 68 (1958), p. 202. | MR | Zbl
,[4] Prolongations and generalized Liapunov functions, Ann. Inst. Fourier, Grenoble, 14 (1964), pp. 237-268. | EuDML | Numdam | MR | Zbl
- ,[5] Establidad bajo perturbaciones sostenidas y su generalizacion en flujos continuous, Acta Mexic. Science Tecnol.,11 (3) (1968), pp. 154-165. | MR | Zbl
,[6] Attractivity and Hopf bifurcation, Nonlinear Analysis, T.M.A., 3 (1979), pp. 87-99. | MR | Zbl
- ,[7] The Hopf bifurcation and its application, Appl. Math. Sci., Springer-Verlag, 19 (1976). | MR | Zbl
- ,[8] Theory of Bifurcations of Dynamical Systems on a Plane, Halsted Press, New York, 1973. | MR
- - - ,[9] Bifurcation of closed orbits from a limit cycle in R2, Rend. Sem. Mat. Padova, 65 (1981). | EuDML | Numdam | MR | Zbl
,