Finding the principal points of a random variable
RAIRO - Operations Research - Recherche Opérationnelle, Tome 35 (2001) no. 3, pp. 315-328.

The p-principal points of a random variable X with finite second moment are those p points in minimizing the expected squared distance from X to the closest point. Although the determination of principal points involves in general the resolution of a multiextremal optimization problem, existing procedures in the literature provide just a local optimum. In this paper we show that standard Global Optimization techniques can be applied.

Mots clés : principal points, d.c. functions, branch and bound
@article{RO_2001__35_3_315_0,
     author = {Carrizosa, Emilio and Conde, E. and Casta\~no, A. and Romero-Morales, D.},
     title = {Finding the principal points of a random variable},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {315--328},
     publisher = {EDP-Sciences},
     volume = {35},
     number = {3},
     year = {2001},
     language = {en},
     url = {http://www.numdam.org/item/RO_2001__35_3_315_0/}
}
Carrizosa, Emilio; Conde, E.; Castaño, A.; Romero-Morales, D. Finding the principal points of a random variable. RAIRO - Operations Research - Recherche Opérationnelle, Tome 35 (2001) no. 3, pp. 315-328. http://www.numdam.org/item/RO_2001__35_3_315_0/

[1] E. Carrizosa, E. Conde, A. Castaño, I. Espinosa, I. González and D. Romero-Morales, Puntos principales: Un problema de Optimización Global en Estadística, Presented at XXII Congreso Nacional de Estadística e Investigación Operativa. Sevilla (1995).

[2] D.R. Cox, A use of complex probabilities in the theory of stochastic processes, in Proc. of the Cambridge Philosophical Society, Vol. 51 (1955) 313-319. | MR 68767 | Zbl 0066.37703

[3] B. Flury, Principal points. Biometrika 77 (1990) 33-41. | MR 1049406 | Zbl 0691.62053

[4] B. Flury and T. Tarpey, Representing a Large Collection of Curves: A Case for Principal Points. Amer. Statist. 47 (1993) 304-306.

[5] R. Fourer, D.M. Gay and B.W. Kernigham, AMPL, A modeling language for Mathematical Programming. The Scientific Press, San Francisco (1993).

[6] E. Gelenbe and R.R. Muntz, Probabilistic Models of Computer Systems-Part I. Acta Inform. 7 (1976) 35-60. | MR 426473 | Zbl 0343.60066

[7] R. Horst, An Algorithm for Nonconvex Programming Problems. Math. Programming 10 (1976) 312-321. | MR 424248 | Zbl 0337.90062

[8] R. Horst and H. Tuy, Global Optimization. Deterministic Approaches. Springer-Verlag, Berlin (1993). | MR 1274246 | Zbl 0704.90057

[9] S.P. Lloyd, Least Squares Quantization in PCM. IEEE Trans. Inform. Theory 28 (1982) 129-137. | MR 651807 | Zbl 0504.94015

[10] L. Li and B. Flury, Uniqueness of principal points for univariate distributions. Statist. Probab. Lett. 25 (1995) 323-327. | MR 1363232 | Zbl 0837.62017

[11] K. Pötzelberger and K. Felsenstein, An asymptotic result on principal points for univariate distribution. Optimization 28 (1994) 397-406. | MR 1275992 | Zbl 0813.62012

[12] S. Rowe, An Algorithm for Computing Principal Points with Respect to a Loss Function in the Unidimensional Case. Statist. Comput. 6 (1997) 187-190.

[13] T. Tarpey, Two principal points of symmetric, strongly unimodal distributions. Statist. Probab. Lett. 20 (1994) 253-257. | MR 1294603 | Zbl 0799.62019

[14] T. Tarpey, Principal points and self-consistent points of symmetric multivariate distributions. J. Multivariate Anal. 53 (1995) 39-51. | MR 1333126 | Zbl 0820.62047

[15] T. Tarpey, L. Li and B. Flury, Principal points and self-consistent points of elliptical distributions. Ann. Statist. 23 (1995) 103-112. | MR 1331658 | Zbl 0822.62042

[16] A. Zoppè, Principal points of univariate continuous distributions. Statist. Comput. 5 (1995) 127-132.

[17] A. Zoppè, On Uniqueness and Symmetry of self-consistent points of univariate continuous distribution. J. Classification 14 (1997) 147-158. | MR 1449745 | Zbl 0891.62005