Efficient and local efficient solutions for assignment type problems
RAIRO - Operations Research - Recherche Opérationnelle, Volume 35 (2001) no. 3, pp. 301-313.

In this paper, we analyse the multiobjective problem generated by applying a goal programming approach to deal with linear assignment type problem. We specify sufficient conditions for a solution to be efficient for this problem. The notion of efficiency with respect to a neighborhood is also introduced and characterized through sufficient conditions. Unfortunately, these conditions are not necessary in general.

Keywords: efficiency, local efficiency, assignment, multiobjective
@article{RO_2001__35_3_301_0,
     author = {Ferland, Jacques A. and Marziliano, Pina},
     title = {Efficient and local efficient solutions for assignment type problems},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {301--313},
     publisher = {EDP-Sciences},
     volume = {35},
     number = {3},
     year = {2001},
     zbl = {0991.90114},
     mrnumber = {1884555},
     language = {en},
     url = {http://www.numdam.org/item/RO_2001__35_3_301_0/}
}
TY  - JOUR
AU  - Ferland, Jacques A.
AU  - Marziliano, Pina
TI  - Efficient and local efficient solutions for assignment type problems
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2001
DA  - 2001///
SP  - 301
EP  - 313
VL  - 35
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/RO_2001__35_3_301_0/
UR  - https://zbmath.org/?q=an%3A0991.90114
UR  - https://www.ams.org/mathscinet-getitem?mr=1884555
LA  - en
ID  - RO_2001__35_3_301_0
ER  - 
%0 Journal Article
%A Ferland, Jacques A.
%A Marziliano, Pina
%T Efficient and local efficient solutions for assignment type problems
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2001
%P 301-313
%V 35
%N 3
%I EDP-Sciences
%G en
%F RO_2001__35_3_301_0
Ferland, Jacques A.; Marziliano, Pina. Efficient and local efficient solutions for assignment type problems. RAIRO - Operations Research - Recherche Opérationnelle, Volume 35 (2001) no. 3, pp. 301-313. http://www.numdam.org/item/RO_2001__35_3_301_0/

[1] D. Costa, Méthodes de résolution constructives, séquentielles et évolutives pour des problèmes d'affectation sous-contraintes, Doctoral dissertation. Mathematics Department, École Polytechnique Fédérale de Lausanne, Switzerland (1995).

[2] J.A. Ferland, Generalized Assignment Type Problems, a Powerful Modeling Scheme, in Practice and Theory of Automated Timetabling II, edited by E. Burke and M. Carter. Springer, Lecture Notes in Comput. Sci. 1408 (1998) 53-77.

[3] J.A. Ferland, I. Berrada, I. Nabli, A. Ahiot, P. Michelon and V. Gascon, Generalized Assignment-Type Goal Programming Problem and Application to Nurse Scheduling. J. Heuristics 7 (2001) 391-413. | Zbl

[4] J.A. Ferland, A. Hertz and A. Lavoie, An Objected Oriented Methodology For Solving Assignment Type Problems With Neighborhood Search Techniques. Oper. Res. 44 (1996) 347-359. | MR | Zbl

[5] J.A. Ferland and A. Lavoie, Exchanges Procedures For Timetabling Problems. Discrete Appl. Math. 35 (1992) 237-253. | Zbl

[6] A.M. Geoffrion, Proper Efficiency and Theory of Vector Maximization. J. Math. Anal. Appl. 22 (1968) 618-630. | MR | Zbl

[7] H. Isermann, The Relevance of Duality in Multiple Objective Linear Programming. TIMS Studies in the Management Sci. 6 (1977) 241-262.

[8] F.A. Lootsma, Optimization with Multiple Objectives, in Mathematical Programming: Recent Developments and Applications, edited by M. Iri and K. Tanabe (1989) 333-364. | MR | Zbl

[9] P. Marziliano, Problèmes multicritères avec contraintes d'affectation, Master Thesis. Département d'Informatique et de Rechereche Opérationnelle, Université de Montréal, Canada (1996).

[10] P. Marziliano and J.A. Ferland, A Heuristic Approach for Multiobjective Problems with Assignment Constraints, Publication # 1128. Département d'Informatique et de Recherche Opérationnelle, Université de Montréal, Canada (1998).

[11] J.B. Mazzola and A.W. Neebe, Resource-Constrained Assignment Scheduling. Oper. Res. 34 (1986) 560-572. | MR | Zbl

[12] V. Robert, La confection d'horaires par décomposition en sous-problèmes d'affectation, Doctoral dissertation. Mathematics Department, École Polytechnique Fédérale de Lausanne, Switzerland (1996).

[13] R.E. Steuer, Multiple Criteria Optimization: Theory,Computation and Application. Wiley, New York (1986). | MR | Zbl

[14] S. Zionts and J. Wallenius, An Interactive Multiple Objective Linear Programming Method for a Class of Underlying Nonlinear Utility Functions. Management Sci. 29 (1983) 519-529. | MR | Zbl