Highest Weights of Semisimple Lie Algebras
Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 24 (1977), Exposé no. 7, 40 p.
@article{RCP25_1977__24__209_0,
     author = {Laskar, W.},
     title = {Highest {Weights} of {Semisimple} {Lie} {Algebras}},
     journal = {Les rencontres physiciens-math\'ematiciens de Strasbourg -RCP25},
     note = {talk:7},
     publisher = {Institut de Recherche Math\'ematique Avanc\'ee - Universit\'e Louis Pasteur},
     volume = {24},
     year = {1977},
     language = {en},
     url = {http://www.numdam.org/item/RCP25_1977__24__209_0/}
}
TY  - JOUR
AU  - Laskar, W.
TI  - Highest Weights of Semisimple Lie Algebras
JO  - Les rencontres physiciens-mathématiciens de Strasbourg -RCP25
N1  - talk:7
PY  - 1977
DA  - 1977///
VL  - 24
PB  - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
UR  - http://www.numdam.org/item/RCP25_1977__24__209_0/
LA  - en
ID  - RCP25_1977__24__209_0
ER  - 
Laskar, W. Highest Weights of Semisimple Lie Algebras. Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Tome 24 (1977), Exposé no. 7, 40 p. http://www.numdam.org/item/RCP25_1977__24__209_0/

[1]- H. Wcyl. The classical groups (Princeton Univ. Press 1946).

[2] S. Lie and F. Engel. Theorie der Transformations gruppen (Leipzig 1893). | JFM 08.0212.01

[3] L.S. Pontrjagin. Topological groups (Princeton Univ. Press 1939). | JFM 65.0872.02

[4] J. Patera and D. Sankoff. Tables of branching rules (Presses de l'Université de Montreal 1973). | MR 450467

[5] H. Zasscnhaus. Lecture Notes of the Summer School (Université de Montreal juin 1976) on Lie Groups, Lie algebras and Representation Theory. The theory of groups. (Chelsea 1958).

[6] E. Cartan. These, Paris 1894. 2nd ed.(Vuibert, Paris 1933),

[7] C. Chevalley. Théorie des groupes de Lie (Hermann, Paris 1968). | Zbl 0186.33104

[8] H. Bacry. Leçons sur la théorie des groupes (Gordon & Breach 1968).

[9] E.B. Dynkin. Am. Math. Soc. translations n° 17 (1950) | MR 35761

E.B. Dynkin Am. Math. Soc. translations serie 2, 6 (1957), p.111-244.

[10] H. Freudenthal & de Vries. Linear Lie Groups (Academic Press 1969). | MR 260926 | Zbl 0377.22001

[11] N. Jacobson. Lie algebras (John Wiley, Interscience, 1962). | MR 143793 | Zbl 0121.27504

[12] J.E. Humphreys. Introduction to Lie algebras, etc. (Springer, G.T.M. 1972). | MR 323842 | Zbl 0254.17004

[13] P.A. Rowlatt. Group Theory and elementary particles.(Longmans 1966). | Zbl 0156.23602

[14] I. Satake. Classification theory of semi-simple algebraic groups .(M. Dekker, New-York 1971). | MR 316588 | Zbl 0226.20037

[15] J.P. Serre, Algebres de Lie semisimples complexes (Benjamin ; 1966). | MR 215886 | Zbl 0144.02105

[16] H. Bacry, Ph. Combe and P. Sorba. Rept. Math. Phys. 5, 2, 145 (1974) | Zbl 0293.22034

[17,a] J. Patera, R. Sharp, P. Wintemitz and H. Zassenhaus. Subgroups of the Poincaré group and their invariants (J.M.P. 17, 6, 1976). | MR 407200 | Zbl 0347.20029

[18,a] M. Hamermesh. Group theory and its application to physical problems. (Addison-Wesley 1962). | MR 136667 | Zbl 0100.36704

[18,b] N. Bourbaki. Groupes et algèbres de Lie. Chap. 8, p. 214.( Hermann 1975). | Zbl 0483.22001

[19] M. Perroud. On the irreducible representations of the Lie algebra chain G 2 A 2 (J.M.P. 17, 11, 1976). | MR 426659 | Zbl 0346.17007

[20] W. Laskar. Highest weight of smi-simple Lie algebras (5ième Colloque sur la théorie des groupes ; Montréal 5-9 Juillet 1976). | Zbl 0358.17013