Two shallow-water type models for viscoelastic flows from kinetic theory for polymers solutions
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 47 (2013) no. 6, p. 1627-1655

In this work, depending on the relation between the Deborah, the Reynolds and the aspect ratio numbers, we formally derived shallow-water type systems starting from a micro-macro description for non-Newtonian fluids in a thin domain governed by an elastic dumbbell type model with a slip boundary condition at the bottom. The result has been announced by the authors in [G. Narbona-Reina, D. Bresch, Numer. Math. and Advanced Appl. Springer Verlag (2010)] and in the present paper, we provide a self-contained description, complete formal derivations and various numerical computations. In particular, we extend to FENE type systems the derivation of shallow-water models for Newtonian fluids that we can find for instance in [J.-F. Gerbeau, B. Perthame, Discrete Contin. Dyn. Syst. (2001)] which assume an appropriate relation between the Reynolds number and the aspect ratio with slip boundary condition at the bottom. Under a radial hypothesis at the leading order, for small Deborah number, we find an interesting formulation where polymeric effect changes the drag term in the second order shallow-water formulation (obtained by J.-F. Gerbeau, B. Perthame). We also discuss intermediate Deborah number with a fixed Reynolds number where a strong coupling is found through a nonlinear time-dependent Fokker-Planck equation. This generalizes, at a formal level, the derivation in [L. Chupin, Meth. Appl. Anal. (2009)] including non-linear effects (shallow-water framework).

DOI : https://doi.org/10.1051/m2an/2013081
Classification:  76A05,  76A10,  35Q84,  82D60,  74D10,  35Q30,  78M35
Keywords: viscoelastic flows, polymers, Fokker-Planck equation, non newtonian fluids, Deborah number, shallow-water system
@article{M2AN_2013__47_6_1627_0,
     author = {Narbona-Reina, Gladys and Bresch, Didier},
     title = {Two shallow-water type models for viscoelastic flows from kinetic theory for polymers solutions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {47},
     number = {6},
     year = {2013},
     pages = {1627-1655},
     doi = {10.1051/m2an/2013081},
     mrnumber = {3110490},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2013__47_6_1627_0}
}
Narbona-Reina, Gladys; Bresch, Didier. Two shallow-water type models for viscoelastic flows from kinetic theory for polymers solutions. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 47 (2013) no. 6, pp. 1627-1655. doi : 10.1051/m2an/2013081. http://www.numdam.org/item/M2AN_2013__47_6_1627_0/

[1] C. Ancey, Plasticity and geophysical flows: a review. J. Non-Newtonian Fluid. Mech. 142 (2007) 4-35. | Zbl 1143.76315

[2] N.J. Balmforth and R.V. Craster, A consistent thin-layer theory for Bingham plastics. J. Non-Newtonian Fluid Mech. 84 (1999) 65-81. | Zbl 0936.76002

[3] N.J. Balmforth, R.V. Craster and R. Sassi, Shallow viscoplastic flow on an inclined plane. J. Fluid Mech. 420 (2002) 1-29. | MR 1937144 | Zbl 1026.76002

[4] J. Banasiak and J.R. Mika, Asymptotic analysis of the Fokker-Planck equations related to Brownian motion. Math. Mod. Meth. Appl. S. 4 (1994) 17-33. | MR 1259200 | Zbl 0795.35126

[5] F. Bouchut and S. Boyaval, A new model for shallow elastic fluids. Preprint (2011), ArXiv:1110.0799[math.NA].

[6] D. Bresch, E.D. Fernández-Nieto, I.R. Ionescu and P. Vigneaux, Augmented Lagrangian Method and Compressible Visco-plastic Flows: Applications to Shallow Dense Avalanches. Adv. Math. Fluid Mech. (2010) 57-89. Doi: 10.1007/978-3-0346-0152-84. | MR 2732004 | Zbl 1206.35191

[7] D. Bresch and P. Noble, Mathematical justification of a shallow water model. Methods Appl. Anal. 14 (2007) 87-118. | MR 2437099 | Zbl 1158.35401

[8] E.C. Bingham, Fluidity and plasticity. Mc Graw-Hill (1922).

[9] R.B. Bird, C.F. Curtiss, R.C. Armstrong and O. Hassager, Dynamic polymeric liquids, in: Kinetic theory. John Wiley and Sons (1987).

[10] L. Chupin, The FENE model for viscoelastic thin film flows. Meth. Appl. Anal. 16 (2009) 217-262. | MR 2563748 | Zbl 1185.35185

[11] M. Boutounet, L. Chupin, P. Noble and J.-P. Vila, Shallow water viscous ßows for arbitrary topography. Commun. Math. Sci. 6 (2008) 29-55. | MR 2397996 | Zbl 1136.76020

[12] P. Degond, M. Lemou and M. Picasso, Viscoelastic fluid models derived from kinetic equations for polymers. SIAM J. Appl. Math. 62 (2002) 1501-1019. | MR 1918565 | Zbl 1047.76005

[13] E.D. Fernández-Nieto and G. Narbona-Reina, Extension of WAF Type Methods to Non-Homogeneous Shallow-Water Equations with Pollutant. J. Sci. Comput. 36 (2008) 193-217. | MR 2434844 | Zbl 1203.76094

[14] E.D. Fernández-Nieto, P. Noble and J.-P. Vila, Shallow Water equations for Non Newtonian fluids, J. Non-Newtonian Fluid Mech. 165 (2010) 712-732. | Zbl 1274.76023

[15] J.-F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar shallow water, numerical validation. Discrete Contin. Dyn. Syst. Ser. B 1 (2001) 89-102. | MR 1821555 | Zbl 0997.76023

[16] M. Guala and A. Stocchino, Large-scale flow structures in particle-wall collision at low Deborah numbers. Eur. J. Mech. B/Fluids 26 (2007) 511-530. | Zbl 1111.76303

[17] O.G. Harlen, J.M. Rallison and M.D. Chilcott, High-Deborah-Number flows of dilute polymer solutions. J. Non-Newtorian Fluid Mech. 34 (1990) 319-349. | Zbl 0696.76013

[18] A. Harnoy, The relation between CMD instability and Deborah number in differential type rheological equations. Rheol. Acta 32 (1993) 483-489.

[19] A. Harnoy, Bearing Design in Machinery Engineering Tribology and Lubrication. CRC Press (2002).

[20] W.H. Herschel and T. Bulkley, Measurement of consistency as applied to rubber-benzene solutions. Am. Soc. Test Proc. 26 (1926) 621-633.

[21] B. Jourdain, T. Lelièvre and C. Le Bris, Numerical analysis of micro-macro simulations of polymeric fluid flows: a simple case. Math. Mod. Meth. Appl. S 12 (2002) 1205-1243. | MR 1927023 | Zbl 1041.76003

[22] Y. Kwon, S.J. Kim and S. Kim, Finite element modeling of high Deborah number planar contration flows with rational function interpolation of the Leonov model. Korea-Australia Rheol. J. 15 (2003) 131-150.

[23] E. Lauga, Life at high Deborah number. Europhys. Lett. 86 (2009). Doi: 10.1209/0295-5075/86/64001.

[24] C. Le Bris, Systèmes multi-échelles: Modélisation et simulation. Springer-Verlag, Berlin (2005). | Zbl 1109.76002

[25] T. Li, E. Vanden-Eijnden, P. Zhang and W. E, Stochastic models of polymeric fluids at small Deborah number. J. Non-Newtonian Fluid Mech. 121 (2004) 117-125. | Zbl 1078.76009

[26] F. Lin, P. Zhang and Z. Zhang, On the Global Existence of Smooth Solution to the 2-D FENE Dumbbell Model. Commun. Math. Phys. 277 (2008) 531-553. | MR 2358294 | Zbl 1143.82035

[27] A. Lozinski, R.G. Owens and G. Fang, A Fokker-Planck based numerical method for modelling non-homogeneous flows of dilute polymeric solutions. J. Non-Newtonian Fluid Mech. 122 (2004) 273-286. | Zbl 1143.76338

[28] F. Marche, Derivation of a new two-dimensional viscous shallow water model with varying topog- raphy, bottom friction and capillary effects, Eur. J. Mechanics-B/Fluids 26 (2007) 49-63. | MR 2281291 | Zbl 1105.76021

[29] N. Masmoudi, Well-Posedness for the FENE Dumbbell Model of Polymeric Flows. Commun. Pure Appl. Math. 61 (2008) 1685-1714. | MR 2456183 | Zbl 1157.35088

[30] A. Mellet and A. Vasseur, Asymptotic Analysis for a Vlasov-Fokker-Planck/Compressible Navier-Stokes System of Equations. Commun. Math. Phys. 281 (2008) 573-596. | MR 2415460 | Zbl 1155.35415

[31] G. Narbona-Reina and D. Bresch, On a shallow water model for non-newtonian fluids, Numer. Math. Adv. Appl. Springer Berlin, Heidelberg (2010) 693-701. | Zbl pre05896823

[32] G. Narbona-Reina, J.D. Zabsonré, E.D. Fernández-Nieto and D. Bresch, Derivation of a bilayer model for Shallow Water equations with viscosity. Numerical validation. CMES 43 (2009) 27-71. | MR 2536223 | Zbl 1232.76008

[33] A. Oron, S.H. Davis and S.G. Bankoff, Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69 (1997) 931-980.

[34] H.C. Ottinger, Stochastic Processes in Polymeric Fluids. Springer-Verlag, Berlin (1996). | MR 1383323 | Zbl 0995.60098

[35] M. Reiner, The Deborah number, Phys. Today 12 (1964) 62.

[36] S. Shao and E.Y.M. Lo, Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv. Water Resources 26 (2003) 787-800.

[37] J.A. Tichy and M.F. Modest, A Simple Low Deborah Numer Model for Unsteady Hydrodynamic Lubrication, Including Fluid Inertia. J. Rheology 24 (1980) 829-845.

[38] E.F. Toro, Shock-Capturing Methods for Free-Surface Shallow Flows. John Wiley and Sons, England (2001). | Zbl 0996.76003

[39] H. Zhang and P. Zhang, Local Existence for the FENE-Dumbbell Model of Polymeric Fluids. Arch. Ration. Mech. Anal. 181 (2006) 373-400. | MR 2221211 | Zbl 1095.76004