We propose a derivation of a nonequilibrium Langevin dynamics for a large particle immersed in a background flow field. A single large particle is placed in an ideal gas heat bath composed of point particles that are distributed consistently with the background flow field and that interact with the large particle through elastic collisions. In the limit of small bath atom mass, the large particle dynamics converges in law to a stochastic dynamics. This derivation follows the ideas of [P. Calderoni, D. Dürr and S. Kusuoka, J. Stat. Phys. 55 (1989) 649-693. D. Dürr, S. Goldstein and J. Lebowitz, Z. Wahrscheinlichkeit 62 (1983) 427-448. D. Dürr, S. Goldstein and J.L. Lebowitz. Comm. Math. Phys. 78 (1981) 507-530.] and provides extensions to handle the nonzero background flow. The derived nonequilibrium Langevin dynamics is similar to the dynamics in [M. McPhie, P. Daivis, I. Snook, J. Ennis and D. Evans, Phys. A 299 (2001) 412-426]. Some numerical experiments illustrate the use of the obtained dynamic to simulate homogeneous liquid materials under shear flow.
Mots-clés : nonequilibrium, Langevin dynamics, multiscale, molecular simulation
@article{M2AN_2013__47_6_1583_0, author = {Dobson, Matthew and Legoll, Fr\'ed\'eric and Leli\`evre, Tony and Stoltz, Gabriel}, title = {Derivation of {Langevin} dynamics in a nonzero background flow field}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1583--1626}, publisher = {EDP-Sciences}, volume = {47}, number = {6}, year = {2013}, doi = {10.1051/m2an/2013077}, mrnumber = {3110489}, zbl = {1287.82017}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2013077/} }
TY - JOUR AU - Dobson, Matthew AU - Legoll, Frédéric AU - Lelièvre, Tony AU - Stoltz, Gabriel TI - Derivation of Langevin dynamics in a nonzero background flow field JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2013 SP - 1583 EP - 1626 VL - 47 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2013077/ DO - 10.1051/m2an/2013077 LA - en ID - M2AN_2013__47_6_1583_0 ER -
%0 Journal Article %A Dobson, Matthew %A Legoll, Frédéric %A Lelièvre, Tony %A Stoltz, Gabriel %T Derivation of Langevin dynamics in a nonzero background flow field %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2013 %P 1583-1626 %V 47 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2013077/ %R 10.1051/m2an/2013077 %G en %F M2AN_2013__47_6_1583_0
Dobson, Matthew; Legoll, Frédéric; Lelièvre, Tony; Stoltz, Gabriel. Derivation of Langevin dynamics in a nonzero background flow field. ESAIM: Mathematical Modelling and Numerical Analysis , Volume 47 (2013) no. 6, pp. 1583-1626. doi : 10.1051/m2an/2013077. http://www.numdam.org/articles/10.1051/m2an/2013077/
[1] Computer simulation of liquids. Clarendon Press, New York, NY, USA (1989). | Zbl
and ,[2] Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley and Sons Inc., New York, second edition (1999). | MR | Zbl
,[3] A mechanical model of Brownian motion in half-space. J. Stat. Phys. 55 (1989) 649-693. | MR | Zbl
, and ,[4] Non-equilibrium molecular dynamics. In Handbook of Materials Modeling, edited by S. Yip (2005) 745-761.
, and ,[5] Financial modelling with jump processes. Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL (2004). | MR | Zbl
and ,[6] A mechanical model for the Brownian motion of a convex body. Z. Wahrscheinlichkeit 62 (1983) 427-448. | MR | Zbl
, and ,[7] A mechanical model of Brownian motion. Comm. Math. Phys. 78 (1981) 507-530. | MR | Zbl
, and .[8] A validation of the p-SLLOD equations of motion for homogeneous steady-state flows. J. Chem. Phys. 124 (2006).
, and ,[9] Statistical mechanics of nonequilibrium liquids. ANU E Press, Canberra (2007). | Zbl
and ,[10] Discussion of recent developments in hybrid atomistic-continuum methods for multiscale hydrodynamics. Bull. Pol. Acad. Sci-Te. 53 (2005) 335-342. | Zbl
,[11] The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18 (1950) 817-829. | MR
and ,[12] Nonequilibrium shear viscosity computations with Langevin dynamics. Multiscale Model. Simul. 10 (2012) 191-216. | MR | Zbl
and ,[13] Stochastic ordinary and stochastic partial differential equations. In vol. 58 of Stoch. Modell. Appl. Probab. (2008). | MR | Zbl
,[14] Semigroups of conditioned shifts and approximation of Markov processes. Ann. Probab. 3 (1975) 618-642. | MR | Zbl
,[15] A Classical Mechanical Model of Brownian Motion with Plural Particles. Rev. Math. Phys. 22 (2010) 733-838. | MR
and ,[16] Micro-macro models for viscoelastic fluids: modelling, mathematics and numerics. Sci. China Math. 55 (2012) 353-384. | MR
and ,[17] Non-ergodicity of the Nosé-Hoover thermostatted harmonic oscillator. Arch. Ration. Mech. Anal. 184 (2007) 449-463. | MR | Zbl
, and ,[18] Non-ergodicity of Nosé-Hoover dynamics. Nonlinearity 22 (2009) 1673-1694. | MR | Zbl
, and ,[19] Generalized Langevin equation for nonequilibrium systems. Phys. A 299 (2001) 412-426. | Zbl
, , , and ,[20] Molecular dynamics-continuum hybrid computations: A tool for studying complex fluid flows. Phys. Rev. E 52 (1995) R5792-R5795.
and ,[21] W. Ren and W. E, Heterogeneous multiscale method for the modeling of complex fluids and micro-fluidics. J. Comput. Phys. 204 (2005) 1-26. | MR | Zbl
[22] Diffusion and viscosity equations of state for a Lennard-Jones fluid obtained from molecular dynamics simulations. Int. J. Thermophys. 18 (1997) 1109-1121.
and ,[23] Limit theorems for Markov processes. Theor. Probab. Appl. 3 (1958) 202-246. | Zbl
,[24] Dissipative particle dynamics: A useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Phys. Rev. E 68 (2003) 046702.
, and ,[25] A new algorithm for unrestricted duration nonequilibrium molecular dynamics simulations of planar elongational flow. Comput. Phys. Commun. 117 (1999) 191-199.
and ,[26] Homogeneous non-equilibrium molecular dynamics simulations of viscous flow: techniques and applications. Mol. Simulat. 33 (2007) 189-229. | Zbl
and ,[27] Modified nonequilibrium molecular dynamics for fluid flows with energy conservation. J. Chem. Phys. 106 (1997) 5615-5621.
, , and ,[28] Hybrid atomistic-continuum method for the simulation of dense fluid flows. J. Comp. Phys. 205 (2005) 373-390. | MR | Zbl
, and ,Cited by Sources: