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TWO SHALLOW-WATER TYPE MODELS FOR VISCOELASTIC FLOWS
FROM KINETIC THEORY FOR POLYMERS SOLUTIONS
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Abstract. In this work, depending on the relation between the Deborah, the Reynolds and the
aspect ratio numbers, we formally derived shallow-water type systems starting from a micro-macro
description for non-Newtonian fluids in a thin domain governed by an elastic dumbbell type model
with a slip boundary condition at the bottom. The result has been announced by the authors in
[G. Narbona-Reina, D. Bresch, Numer. Math. and Advanced Appl. Springer Verlag (2010)] and in
the present paper, we provide a self-contained description, complete formal derivations and various
numerical computations. In particular, we extend to FENE type systems the derivation of shallow-
water models for Newtonian fluids that we can find for instance in [J.-F. Gerbeau, B. Perthame, Discrete
Contin. Dyn. Syst. (2001)] which assume an appropriate relation between the Reynolds number and
the aspect ratio with slip boundary condition at the bottom. Under a radial hypothesis at the leading
order, for small Deborah number, we find an interesting formulation where polymeric effect changes the
drag term in the second order shallow-water formulation (obtained by J.-F. Gerbeau, B. Perthame).
We also discuss intermediate Deborah number with a fixed Reynolds number where a strong coupling is
found through a nonlinear time-dependent Fokker–Planck equation. This generalizes, at a formal level,
the derivation in [L. Chupin, Meth. Appl. Anal. (2009)] including non-linear effects (shallow-water
framework).
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1. Introduction

In this paper, we formally derived shallow-water type systems starting from a FENE type micro-macro
description for non-Newtonian fluids in a thin domain. Depending on the relation between the Deborah number
De, the Reynolds number Re and the aspect ratio ε, we obtain two asymptotic models: Case 1: Low Deborah
number regime namely De = O(ε) with 1/Re = O(ε) (asymptotically inviscid flows); Case 2: Intermediate
Deborah number regime De = O(1) with Re = O(1) (asymptotically viscous flows).

Our work is an extensive version of what has been announced in our proceeding [31]. Regarding the derivation
of shallow-water type models for non-Newtonian fluids, we can mention the work performed in [6] with bottom
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slip condition and by Fernández-Nieto et al. in [14] with no slip boundary condition at the bottom for a Bingham
fluid. Remark that, in this last paper, an interesting non-intuitive term which takes into account the plasticity
appears at main order in their shallow-water type system. This model has been also treated by Balmforth
et al. [2] so as the numerical approximation of Herschel–Bulkley models, for example in the paper written by
Ancey [1]. Some other results related to the approximation of non-Newtonian fluids are based in the resolution
of the Navier–Stokes equations together with a rheological model, see for example [25,36]. We also mention the
interesting recent paper by Bouchut and Boyaval, see [5], where they propose a reduced model for gravity-driven
free-surface flows of shallow-water elastic fluids which is close to ours. The main difference comes from the fact
that they consider a macroscopic description of non-Newtonian fluids (upper-convected Maxwell model) instead
of a micro-macro description as in our case and a different asymptotic regime. The micro-macro model we take
into account, involves a Navier–Stokes/Fokker–Planck coupled system which corresponds to a FENE elastic
dumbbell model. We derive thin film models generalizing results by Gerbeau, Perthame, see [15] and F.Marche,
see [28] which consider Newtonian fluids with slip boundary condition at the bottom and appropriate range of
adimensionnalized numbers. It could be interesting to perform similar asymptotic in Vila’s framework, see [7,11]
namely with no-slip boundary condition and infinitely large Reynolds number in the limit of infinitely thin layers.
See [14] for such generalization but in the Bingham framework. These last works consider fluid flow on a slope
for different range of coefficients. We also generalize to the free surface framework the paper [10] by Chupin
which considers such kind of flows in a fixed thin domain with given velocity in the Fokker–Planck equation, so
the hydrodynamic and the rheological part are treated separately. The reader is also referred to the interesting
paper [12], by Degond, Lemou, Picasso, where they discuss about viscoelastic fluid models derived from kinetic
equations for polymers. In particular, in this paper an ansatz is performed to find an asymptotic solution of
the Fokker–Planck equation, which plays a crucial role in our work. Our result mix the two approaches by [12]
and [15] to deduce the appropriate shallow-water equations under a radial hypothesis at the leading order.
Depending on the assumptions made on the adimensionnalized numbers namely the Deborah, the Reynolds and
the aspect ratio numbers (Cases 1 and 2 mentioned above), the expansions have to be done up to first order
or second order with respect to ε taking care of the Fokker–Planck equation. This is the originality compared
to [5] and various original difficulties that occur dealing with Fokker–Planck equation.

Case 1. Under a radial assumption at the leading order, that is, the probability density function for the
dumbbell configuration at the leading order is assumed to depend only on the length of the dumbbell, the
classical hypothesis that horizontal velocity v does not depend on the vertical variable z at the leading order
order occurs since we prove that the symmetric part of the stress tensor σ vanishes at main order. This allows to
perform the asymptotic analysis of the system following steps given in [15] even if the assumption 1/Re = O(ε) is
restrictive. In particular, when only first order is considered we don’t obtain neither the viscous nor the polymer
effects, it is necessary to look at the second order approximation to see some effect. The main originality is
that polymeric effect is at same order than viscous effect changing the drag term in the shallow-water system
through a new variable n0 solution of a transport equation. Radial assumption allows to compute explicit
solution through the Maxwellian.

Case 2. When Deborah and Reynolds numbers are fixed and only the aspect ratio goes to zero, we get at main
order a viscous shallow-water system coupled with a Fokker–Planck type system to determine the microscopic
effect. Due to the strong non-Newtonian component in this case, the system becomes a complex non-linear
coupled system. If the viscosity coming from the Newtonian component of the fluid is not taken into account,
as observed in [5], a similar expression for the shallow-water equation is obtained in ours. The difference relies
on the definition of the stress tensor σP given by (2.4) that is related to the forces acting over the polymers.
In our case this definition is given through the Fokker–Planck equation −microscopic model− and in [5] comes
from a macroscopic model, the Upper-Convected Maxwell model. Nevertheless the same structure for the final
model is found. This generalizes [10] where a non-time dependent linear equation is obtained for the velocity in
his range of coefficients and consequently none coupling is taking into account.
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The paper is organized as follows: In Section 2, we present the micro-macro initial model and the asymptotic
systems we will obtain. Then we present the adimensionnalization in Section 3. Section 4 is devoted to the
Low Deborah number regime with a radial assumption at the leading order. Without such assumption, we give
comments. In Section 5, we consider intermediate Deborah number regime and explain why we get a stronger
coupled system. Section 6 is devoted to numerical results namely we prove how even for the Low Deborah
number regime, we can have an interesting effect comparable at the same order than the one derived in [15].

2. The micro-macro initial model and the asymptotic systems

In this section, we present the micro-macro system and the boundary conditions on which we will work on
and we give the different shallow-water type systems which will be obtained depending on the range of the
coefficients.

2.1. The micro-macro initial model

2.1.1. Navier–Stokes/Fokker–Planck system

Let us consider a non-Newtonian flow with constant density ρ, in a two dimensional domain Ωt ⊂ R
2 for all

t ∈ [0, T ], given later on, governed by the equations:

ρ
(
∂tu + div (u ⊗ u)) + ∇p = div σ − ρgez and div u = 0 in Ωt (2.1)

where u = (v, w) is the velocity field, p the pressure, g the constant gravity and ez the unitary normal vector
in the vertical direction. The total stress tensor σ is given by

σ = σS + σP (2.2)

where σS is the stress tensor corresponding to the Newtonian part

σS = μ (∇u + ∇tu), (2.3)

with μ the fluid’s viscosity. The stress tensor σP is directly related to the forces acting over the polymer through
the following expression (cf. [9]):

σP (t, x) = np 〈F (q) ⊗ q〉d − κθnp 〈Id〉d , (2.4)

where 〈·〉d is the q-average defined as 〈ϕ〉d =
∫
B

ϕ(q)f(q)dq for any function ϕ. The variable q simply represents

the vector connecting the two beads of the polymer: Elastic dumbbell polymer and f(t, x, q) represents the
probability at the time t of finding a dumbbell at the point x with elongation q. The other quantities involved
in this expression are:
• np: the number of polymer molecules per unit volume.
• θ: The constant temperature.
• κ: The Boltzman constant (relationship between the temperature and the energy).
• F (q): The spring force (which will be specified later on)
• B: The range for the elongation q.

The kinetic theory gives us the behavior of these polymers into the fluid through the distribution function
f(t, x, q). The diffusion equation for this function is called Fokker–Planck equation and reads, for all (t, q) ∈
R

+ × B:

∂tf + u · ∇f = − div q

(
∇u · q f − 2

ζ
F (q)f − 2κθ

ζ
∇qf

)
, (2.5)

where u is a given velocity field depending on (t, (x, z)) with (x, z) ∈ Ωt. The first term in the right-hand side
is due to the hydrodynamic drag force, the second one modelizes the intramolecular force and the last one the
Brownian force. The constant ζ represents the friction coefficient between the beads, it is related to the Deborah
number. Readers interested by physical book for more details are referred to the one by Bird et al., see [9].
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2.1.2. Spring force expressions

In this section we focus on the definition of the spring force F (q) that depends on the structure of the
polymers. We center in the particular case when an elastic dumbbell model is considered, for these polymers
we can find two kind of elastic connectors, linear and nonlinear. Usually the spring force F (q) is defined as the
gradient of the called spring potential energy P (q):

F (q) = ∇qP (q).

In this case and for a steady state, homogeneous, potential flow, a solution of the Fokker–Planck equation can
be found:

f(q) = feq(q)φ(q)

with feq(q) the equilibrium distribution function,

feq(q) =
1

Jeq
e−

P (q)
κθ

and
φ(q) =

Jeq

J
e

ζ
4κθ (∇u:qq)

a dimensionless factor that contains information about the flow pattern. In these expressions

Jeq =
∫
B

e−
P (q)
κθ dq

is the normalization constant for the equilibrium distribution function feq(q) and J is that for the nonequilibrium
distribute function; with J depending on P (q) and ∇u. See [9] for details.

Hookean spring. For the linear case we have the Hookean spring connector for what the spring force is propor-
tional to the beads separation:

F (q) = Hq

with H the spring constant. Note that we can write F (q) as a potential spring force by simply taking P (q) =
1
2Hq2. Thanks to this fact and the linearity of the spring force we can directly obtain a solution of the distribution
function f as above.

FENE spring. Since there is no restriction on q, the Hookean model permits an infinity elongation for the
polymer, so it is not a realistic model. To avoid this trouble the following spring force is defined:

F (q) =
Hq

1 − q2

q2
m

, q ≤ qm. (2.6)

In this case qm is the maximum elongation of the spring in the polymer so we find a nonlinear force but
the elongation remains bounded. It is called the Finitely Extensible Nonlinear Elastic (FENE) connector force
(see H.C. Ottinger, [34]). Some recent mathematical results about well-posedness of the FENE Fokker–Planck
equation can be found in [10, 26, 29, 39]. This is the model that we will take into account in the sequel.

2.1.3. Coupled FENE type system with free boundary conditions

To write the whole model we must define the domain Ωt (free surface domain) and add to system (2.1)–(2.6)
appropriate boundary conditions: Free surface condition and effect of the atmospheric pressure on the surface
level given by z = H ; no penetration condition and friction effect on the fixed bottom z = zb. In conclusion, the
unknowns (u = (v, w), p, f, H) are solutions of the following system for all t ∈ [0, T ]:{

ρ
(
∂tu + div (u ⊗ u)

)
+ ∇p = div σS + div σP − ρgez; in Ωt

div u = 0 in Ωt
(2.7)
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⎧⎨⎩
σS = μ (∇u + ∇tu); in Ωt

σP = np

∫
B

( Hq

1 − q2

q2
m

⊗ q
)
f(q) − κθnp

∫
B

f(q)Id in Ωt
(2.8)

∂tf + u · ∇f = −∇q ·
(
∇u · q f − 2

ζ

Hq

1 − q2

q2
m

f − 2κθ

ζ
∇qf

)
in Ωt × B(0, qm) (2.9)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(σ − pI) · nS = αS KnS

∂tH + v · ∂xH = w

}
on z = H

((σ − pI) · nB)τ = αB(u)τ

u · nB = 0

}
on z = zb

(2.10)

with Ωt = {(x, z) : x ∈ T, zb < z < H(t, x)} and the constants κ, θ, ζ,H, qm defined in the previous part.
We indicates by T the assumption of horizontal periodic condition. In the boundary conditions, I denotes the
bi-dimensional identity tensor. We consider the surface tension coefficient αS and the friction coefficient αB.
We denote nB the normal vector to the bottom, K = div (nS) the mean curvature with nS the normal vector
to the surface. By subscript τ , we denote the tangential component of a vector field.

2.2. The asymptotic shallow-water type systems

Low Deborah number regime: In this part, we provide a shallow-water type system corresponding to the
Case 1 with radial hypothesis at the leading order. Through an appropriate asymptotic expansion up to order
2 we obtain the following asymptotic system:

∂th̃ + ∂x(h̃v̄) = 0; (2.11)

ρ

(
∂t(h̃v̄) + ∂x

(
h̃v̄2 +

1
2
gh̃2
))

− 4μ∂x(h̃∂xv̄)

+αBξv̄ − αS h̃∂3
x(zb + h̃) + ρgh̃ ∂xzb = 0;

(2.12)

with

ξ =

(
1 +

αB

h̃2

∫ zb+h̃

zb

∫ z

zb

h̃ − (χ − zb)
μ + τ(n0(χ))

dχdz

)−1

and τ(n0) = γ̄1n0De, (2.13)

where v̄ is the averaged horizontal velocity given by v̄ = (
∫ zb+h̃

zb
ṽ)/h̃ with h̃ and ṽ defined through (4.31). The

polymer density n0 is the solution of the next 3d transport equation:

∂tn0 + u0 · ∇n0 = 0, (2.14)

defined over a time-variable vertical domain and with velocity u0 = (v̄, w0); where thanks to the incompressibility
equation,

w0 = v̄∂xzb − (z − zb)∂xv̄. (2.15)

Thus, the unknowns of the system are h̃, v̄ and n0. Note that to be consistent with (3.1) the dimension of γ1 is
γ̄1 = ρV∗L∗γ1 with γ1 defined by (4.25).

Intermediate Deborah number regime: In this part, we provide a shallow-water type system corresponding
respectively to Case 2. It involves a more complex coupling than in Case 1 since it requires to solve an averaged
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system coupled with a full non-stationary Fokker–Planck equation. Since formal proofs are more simple than in
previous part, we will just give the main steps in Section 5.
In this case we find the following asymptotic limit

∂th0 + ∂x(h0v̄0) = 0;

ρ

(
∂t(h0v̄0) + ∂x

(
h0v̄0

2 +
1
2
gh2

0

))
− 4μ∂x(h0∂xv̄0) + αB v̄0 = ∂x

∫ h0

0

(σ11
P0 − σ22

P0);
(2.16)

where (h0, v̄0) are main order term in expansion of (h, v) and (σP0, f0) are coupled through the following system:
for all t ∈ [0, T ], in Ωt

σP0 = np

∫
B

( Hq

1 − q2

q2
m

⊗ q
)
f0(q) − κθnp

∫
B

f0(q) Id

and in Ωt × B with B = B(0, qm):

∂tf0 + v̄0 · ∂xf0 − z∂xv̄0∂zf0 = −∇q ·
((

∂xv̄0 − 1
μσ12

P0

0 − ∂xv̄0

)
· q f0 − 2

ζ

Hq

1 − q2

q2
m

f0 − 2κθ

ζ
∇qf0

)
. (2.17)

This gives a viscoelastic model of thin film fluids, for polymeric flows with intermediate Deborah number. In
spite of the nonlinear nature of this model, it collects the interesting case when the material has an important
elastic component (intermediate Deborah number). For these fluids, the forces coming from the non-Newtonian
nature affect the flow behaviour in a stronger way than in Case 1.

This system also extends the result in [10] since it contains the time derivative in the velocity field equation.
The main difference is that here we deduce a shallow-water system to determine the velocity so we keep its
evolution in time. In [10] a Reynolds equation is considered to define the hydrodynamic of the fluid, thus, the
model reduces to a single non-linear partial differential equation in terms of the thickness of the fluid layer
and the velocity field is determined through a linear equation of this thickness. See for instance the very nice
paper by Oron et al. in [33] for complete description of lubrication systems for Newtonian flows in thin domain.
Furthermore, in [10] the velocity is a given function for the Fokker–Planck equation, so the hydrodynamic and
the rheological part are treated separately. In our case, on the other hand, a coupled problem in velocity is
obtained.

Note that our system is closed to the one obtained in [5]. In this paper it is taken into account just the
viscosity due to the presence of the elastically deformable particles in the fluid, or equivalently, due to the
polymer presence. Thus, if we take μ = 0 and αB = 0 in (2.16) the equation for the velocity coincides with
those in [5] for flat bottom. Saving the difference that −as we mention in the Introduction− the definition of
the stress tensor comes from a different model (Upper-Convected Maxwell model).

3. Adimensionnalization

To make the dimensionless of the equations, we first define the ratio of the thin layer ε = H∗
L∗ , with H∗ and L∗

the characteristic height and length respectively, and then we take the following characteristic variables:

x = L∗x̃, z = H∗z̃, v = V∗ṽ, w = εV∗w̃, t =
L∗
V∗

t̃,

p = ρV 2
∗ p̃, αB = ρV∗α̃B, αS = ρ

V 2∗ L∗
ε

α̃S , K =
ε

L∗
K̃

σP = ρV 2
∗ σ̃P , q = Q∗q̃, λ = ρV 2∗ λ̃

(3.1)

with λ = κθnp a coefficient appearing in the stress tensor σP , see (2.4).
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We define as usual the Reynolds and the Froude numbers: Re =
ρV∗L∗

μ
, Fr =

V∗√
gH∗

and we also consider

the following adimensional parameters related to the Fokker–Planck equation:

De =
ζV∗

4L∗H , δ =
q2
m

Q2∗
, b =

Hq2
m

κθ
. (3.2)

The parameter De is called the Deborah number and is an indicator of how fluid a material is. In this sense,
the more smaller De is, the more fluid the material becomes. Its expression represents the ratio between a
characteristic relaxation time for the fluid ( ζ

4H ) and the convective time scale (T∗ = L∗
V∗

) and measures the
relative importance between elastic and convective effects. The parameter

√
δ is the dimensionless maximum

elongation. According to [12, 34], the parameter δ is roughly the number of monomer units represented by a
bead; thus it is generally larger than 10. Finally, b usually appears in the kinetic theory and it is related to
microscopic constant times. In particular it is the ratio between the characteristic microscopic time related to
the elasticity of the dumbbell ( ζq2

m

4κθ ) and the characteristic microscopic time related to the elastic property of
the fluid ( ζ

4H ) −introduced before to define De number−, (see [9, 24] for more details on this issue).

Remark 3.1. Notice that the coefficient λ = κθnp has the dimension assumed in (3.1), [ρV 2
∗ ]. Effectively, in

the IS the units are [λ] = Joule
m3 = kg

m·s2 , that is exactly the dimension of [ρV 2∗ ] = kg
m·s2 .

3.1. Adimensional microscopic description

Next we are going to find the dimensionless Fokker–Planck equation for the FENE model. First note that
since qm is the maximum dumbbell extension, then we take B = B(0, qm). Taking into account (3.1)−(3.2) the
adimensional Fokker–Planck equation reads:

∂tf + u · ∇f = −∇q ·
((

∂xv 1
ε∂zv

ε∂xw ∂zw

)
· q f − 1

2De
F (q)f − 1

2De

δ

b
∇qf

)
, (3.3)

where now (t, x, q) ∈ R
+ × Ω × B(0,

√
δ) and the dimensionless expression for the FENE connector reads

F (q) =
q

1 − q2

δ

· (3.4)

Similarly we can write the following expression for the stress tensor σP :

σP (t, x) = λ

(
b

δ
〈F (q) ⊗ q〉 − nId

)
,

where now we introduce the q-average 〈ϕ〉 =
∫

B(0,
√

δ)

ϕ(q)f(q)dq for any function ϕ and n = 〈1〉 =∫
B(0,

√
δ)

f(q)dq the density of the polymer chains. As we introduced before, the coefficient λ is λ = κθnp.

So, according to (3.1) the dimensionless stress tensor is given by:

σP (t, x) = λ̃

(
b

δ
〈F (q) ⊗ q〉 − nId

)
. (3.5)

To simplify the Fokker–Planck equation (3.3) we assume that b ≥ 1 and b = δ in order to get the same coefficient
in last two terms; similar assumptions can be found in [10, 24, 27], for example. So finally the adimensional
Fokker–Planck equation reads as follows:

∂tf + u · ∇f = −∇q ·
((

∂xv 1
ε∂zv

ε∂xw ∂zw

)
· q f − 1

2De

(
q

1 − q2

δ

f + ∇qf

))
, (3.6)
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and the stress tensor σP as:

σP (t, x) = λ̃

(〈
q

1 − q2

δ

⊗ q

〉
− nId

)
· (3.7)

Remark 3.2. From the adimensional FENE model above, we can find the spring potential energy for what
F (q) = ∇qP (q) given by:

P (q) = − δ

2
ln
(

1 − q2

δ

)
·

Thus, if we define the normalized “Maxwellian” function as:

M(q) =
1

JM

(
1 − q2

δ

) δ
2

with JM =
∫

B(0,
√

δ)

(
1 − q2

δ

) δ
2

dq, (3.8)

we have that F (q) = −∇q(ln M(q)). This allows us to write the last two terms in equation (3.6) as follows:

F (q)f + ∇qf = M(q)∇q

(
f

M(q)

)
· (3.9)

So we can also write the Fokker–Planck equation as:

∂tf + u · ∇f = −∇q ·
((

∂xv 1
ε∂zv

ε∂xw ∂zw

)
· q f

)
+

1
2De

∇q ·
(

M(q)∇q

( f

M(q)

))
· (3.10)

�
3.2. Adimensional macroscopic equations/boundary conditions

First we develop the equations (2.7) and the boundary conditions (2.10) for each component of the velocity.

By assuming a symmetric stress tensor σ =
(

σ11 σ12

σ12 σ22

)
, the equations read:

ρ(∂tv + v∂xv + w∂zv) + ∂xp = ∂zσ
12 + ∂xσ11 (3.11)

ρ(∂tw + v∂xw + w∂zw) + ∂zp = ∂xσ12 + ∂zσ
22 − ρg (3.12)

∂xv + ∂zw = 0 (3.13)
and the boundary conditions:
1. Free surface

We take nS = 1√
1+|∂xH|2

(−∂xH
1

)
, so the tension condition reads:

− ∂xH(σ11 − p) + σ12 = −αSK∂xH ; (3.14)
−∂xHσ12 + (σ22 − p) = αSK, (3.15)

and the kinematic condition:
∂tH + v∂xH = w. (3.16)

2. Bottom

We take nB = 1√
1+|∂xzb|2

(−∂xzb

1

)
and the tangent vector as τ = 1√

1+|∂xzb|2

(
1

∂xzb

)
. So the friction

condition reads:

∂xzb(σ11 − σ22) + (|∂xzb|2 − 1)σ12 = −αB(v + w∂xzb)
√

1 + |∂xzb|2, (3.17)

and the no penetration condition:
−v∂xzb + w = 0. (3.18)
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For the development below we use the expression of σS (2.3) and we denote σP =
(

σ11
P σ12

P

σ12
P σ22

P

)
. Taking into

account (3.1), we write the non dimensional equations as follows (we drop the “tilde” for the sake of simplicity
in notation):

∂tv + v∂xv + w∂zv + ∂xp =
1
ε
∂zσ

12
P + ∂xσ11

P +
1

Re

(
1
ε2

∂2
zv + ∂z(∂xw) + 2∂2

xv

)
; (3.19)

∂tw + v∂xw + w∂zw +
1
ε2

∂zp =

=
1
ε
∂xσ12

P +
1
ε2

∂zσ
22
P − 1

ε2
1

Fr2
+

1
Re

(
1
ε2

(∂x(∂zv) + 2∂2
zw) + ∂2

xw

)
;

(3.20)

∂xv + ∂zw = 0, (3.21)

and the boundary conditions:
1. Free surface:

1
ε

1
Re

∂zv − ε
1

Re
(∂xH(2∂xv) − ∂xw) − ε∂xH(σ11

P − p) + σ12
P = −εαSK∂xH ; (3.22)

− 1
Re

(∂xH∂zv − 2∂zw) − ε2 1
Re

∂xH∂xw − ε∂xHσ12
P + σ22

P − p = αSK; (3.23)

∂tH + v∂xH = w. (3.24)

2. Bottom:

− 1
ε

1
Re

∂zv − σ12
p + ε

1
Re

(
− ∂xw + |∂xzb|2∂zv + 2∂xzb(∂xv − ∂zw)

)
+ ε∂xzb(σ11

P − σ22
P )

+ε2|∂xzb|2σ12
P + ε3 1

Re
|∂xzb|2∂xw = −αB(v + ε2w∂xzb)

√
1 + ε2|∂xzb|2; (3.25)

−v∂xzb + w = 0. (3.26)

4. Low Deborah number regime

4.1. Range of coefficients and system to be studied

Let us consider the following relations between the adimensional numbers:

1
Re

= ε μ0, αS = ε α0S , αB = ε α0B, De = εDe0 (4.1)

with μ0, α0S , α0B,De0 of order of the unity and let us perform asymptotic expansions up to second order with
respect to ε. Such calculations have been perfomed for the Navier–Stokes equations with free surface namely
with σP = 0 in [15, 32] justifying a corrected shallow-water system. Here the main novelty is to investigate
the microscopic effect due to the Fokker–Planck equation. We will get an influence at same order than the one
obtained in [15, 32]: the miscroscopic effect is then comparable to a friction drag term. Before writing the full
system with the boundary conditions, we focus on the asymptotic Fokker–Planck equation. Remind that we
need the solution f to find σP and then to solve Navier–Stokes equations.

The Fokker–Planck equation. The influence of the macroscopic flow on the polymers comes from the presence
of the velocity u in the Fokker–Planck equation. Denoting

∇u =
1
ε

(
0 ∂zv
0 0

)
︸ ︷︷ ︸

C

+
(

∂xv 0
0 ∂zw

)
︸ ︷︷ ︸

G

+ε

(
0 0
∂xw 0

)
︸ ︷︷ ︸

E

, (4.2)
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we can write equation (3.6) into the compact form

Tf + B̃f =
1
ε
Ãf, (4.3)

where

Tf = ∂tf + v∂xf + w∂zf, (4.4)
B̃f = ∇q · ((G + εE)qf), Ãf = ∇q ·

(∇qf + F (q)f − 2De0Cqf
)
/(2De0). (4.5)

Coupled system and boundary conditions. In conclusion, the system under consideration to perform the asymp-
totic analysis with respect to the adimensional number ε, reads:

∂tv + v∂xv + w∂zv + ∂xp =
1
ε
∂zσ

12
P + ∂xσ11

P + μ0

(
1
ε
∂2

zv + ε(∂z(∂xw) + 2∂2
xv)
)

; (4.6)

∂tw + v∂xw + w∂zw +
1
ε2

∂zp =
1
ε
∂xσ12

P +
1
ε2

∂zσ
22
P

+ μ0

(
1
ε
(∂x(∂zv) + 2∂2

zw) + ε∂2
xw

)
− 1

ε2
1

Fr2
; (4.7)

∂xv + ∂zw = 0; (4.8)

with
Tf + B̃f =

1
ε
Ãf where T, Ã and B̃ defined by (4.4) and (4.5) (4.9)

and the boundary conditions on the surface

z = H

⎧⎪⎪⎨⎪⎪⎩
1
ε
μ0∂zv +

1
ε
σ12

P − εμ0(2∂xH∂xv − ∂xw) − ∂xH(σ11
P − p) = −εα0SK∂xH ;

−μ0(∂xH∂zv − 2∂zw) − ∂xHσ12
P +

1
ε
(σ22

P − p) − ε2μ0∂xH∂xw = α0SK;
∂tH + v∂xH = w;

(4.10)

and on the bottom

z = zb

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− 1

ε
μ0∂zv − 1

ε
σ12

P + ∂xzb(σ11
P − σ22

P )

+ εμ0

(− ∂xw + |∂xzb|2∂zv + 2∂xzb(∂xv − ∂zw)
)

+ ε|∂xzb|2σ12
P + ε3μ0|∂xzb|2∂xw = −α0B(v + ε2w∂xzb)

√
1 + ε2|∂xzb|2;

− v∂xzb + w = 0.

(4.11)

4.2. Pressure up to order one/integrated horizontal components

Let us integrate equations (4.6)−(4.8) with respect to the vertical variable to prepare things in order to get
a shallow-water type system.

Pressure expression. We obtain the expression for the pressure by integrating equation (4.7) from z to H . Note
that we just take into account terms of order ε0 and ε:

p(z) = − 1
Fr2

(z − H) + σ22
P − ε∂x

∫ H

z

σ12
P + εμ0∂zw +

[− (σ22
P − p) + εσ12

P ∂xH − εμ0∂zw
]
|z=H

+ O(ε2)

and thanks to second condition in (4.10), it reads:

p(z) = − 1
Fr2

(z − H) + σ22
P − ε∂x

∫ H

z

σ12
P + εμ0∂zw − ε

[
α0SK + μ0∂xH∂zv − μ0∂zw

]
|z=H

+ O(ε2). (4.12)
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Height equation. As usually, we integrate equation (4.8) from zb to H . This gives

∂tH + ∂x

∫ H

zb

vdz = 0 (4.13)

Vertical average of horizontal momentum equation. Let us integrate equation (4.6) from zb to H using first
conditions in (4.10) and (4.11). We get the following equation

∂t

∫ H

zb

vdz + ∂x

∫ H

zb

v2dz + ∂x

∫ H

zb

p dz + p(zb)∂xzb

= ∂x

∫ H

zb

σ11
P dz + 2εμ0∂x

∫ H

zb

∂xv dz − εα0SK∂xH − α0Bv|z=zb

+ ∂xzb σ22
P |z=zb

− ε
[
μ0|∂xzb|2∂zv − 2μ0∂xzb ∂zw + |∂xzb|2σ12

P

]
|z=zb

+ O(ε2).

(4.14)

4.3. Second order shallow-water type approximation

As in [15, 32], we want to obtain the viscous effects so we must achieve the second order approximation. Let
us expand the unknowns in terms of ε, namely:

v = v0 + εv1 + O(ε2),
w = w0 + εw1 + O(ε2),
p = p0 + εp1 + O(ε2),
h = h0 + εh1 + O(ε2),
f = f0 + εf1 + O(ε2).

So, σP = σP0 + εσP1 +O(ε2) where σP0 and σP1 correspond to (3.7) for f0 and f1 respectively. If we write the
equations at main order 1/ε, we get:

μ0∂
2
zv0 = −∂zσ

12
P0, μ0∂zv0|z=H = −σ12

P0|z=H , μ0∂zv0|z=zb
= −σ12

P0|z=zb
.

The classical way (cf. [15]) to deduce the hydrostatic system is based on the fact that the velocity v does not
depend on z up to first order, so v0 = v0(t, x) and ∂zv0 = 0. But with the previous equations we find the velocity
v0 may depend on the stress tensor σP through the expression above.

In the sequel, we will split our study in two parts. In a first part, we will assume some radial hypothesis at
the leading order which help to simplify the study and give explicit calculation of the microscopic effect. In a
second part, we give the coupling system.

Radial hypothesis: Explicit drag effect through a nonlocal term

In this part, we assume radial properties over the probability density function at the leading order f0, which
help to conclude that σ12

P0 = 0 and therefore that ∂zv0 = 0 through the system above. We know that σP comes
from the solution of the Fokker–Planck equation according to (3.7). So we focus on solve (4.9) taking into
account that μ0∂zv0 = −σ12

P0. This is the subject of this section where we will find the expression of σP and in
particular we will obtain that σ12

P0 = 0. Hence ∂zv0 = 0 as in [15]. Then we perform the ansatz up to order two
and get a correction in the drag term for the shallow-water system.

First we must prove the existence of the solution of the equation (4.9) since we have changed the original
Fokker–Planck equation in order to introduce the asymptotic hypotheses. Besides, we must also take into account
the restriction on v0 with respect to σ12

P0. We find the next result:

Proposition 4.1. Let HMrad
the space of radial functions in HM = {f/ f√

M
∈ L2(B)} defined as follows:

HMrad
= {g ∈ HM/g = G(|q|) for some operator G}.
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We consider the matrix C defined as

C =
(

0 ∂zv
0 0

)
with ∂zv = − 1

μ0
σ12

P and being

σi j
P = λ̃

(∫
B

qiqj

1 − q2

δ

f(q)dq −
∫
B

f(q)dq δij

)
(4.15)

with q = (q1, q2), B = B(0,
√

δ) and δij the Kronecker delta. Then the equation Ãf = 0, that reads

∇q ·
[
M∇q

(
f

M

)
− 2De0Cqf

]
= 0 (4.16)

admits a unique solution f ∈ HMrad
and it is of the form

f = a0M(q),

for some constant a0 ∈ R and M(q) defined in (3.8).

Proof. First we remark that σ12
P = 0. Indeed, if we solve the integral by using the polar variables:{

q1 = r cos(θ)
q2 = r sin(θ) with r ∈ (0,

√
δ), θ ∈ (0, 2π),

we obtain

σ12
P = λ̃

∫
B

q1q2

1 − q2

δ

f(q)dq = λ̃

∫ √
δ

0

∫ 2π

0

r3 sin(θ) cos(θ)
1 − r2

δ

f(r, θ)dθdr

but if we search f ∈ HMrad
we have f(q) = f(r, θ) = f(r), so we find

σ12
P = λ̃

∫ √
δ

0

r3

1 − r2

δ

f(r)dr

∫ 2π

0

sin(θ) cos(θ)dθ = 0.

This makes that ∂zv = − 1
μ0

σ12
P = 0 and thanks to the definition of the matrix C, we get C = 0. Then it is

standard that there is a unique solution
f(q) = a0M(q)

for some constant a0 ∈ R. �

Second order approximation of the stress tensor σP . Since the stress tensor σ depends on the density f and with
the objective of getting a second order model, we search now the second order approximation of f collected in
the following proposition.

Proposition 4.2. We consider an asymptotic expansion of f and v in powers of ε, namely:

f = f0 + εf1 + O(ε2);

v = v0 + εv1 + O(ε2),

and assume that f0 ∈ HMrad
. Then the solution of the Fokker–Planck equation (4.9) is approximated up to

order 2 through:
f0 = a0M(q), (4.17)

f1 =
1
2
De0a0 ((Cs

1 + 2G0)q ⊗ q)M(q), (4.18)

where a0 is the solution of the equation:
∂ta0 + u0 · ∇a0 = 0 (4.19)
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and the matrix Cs
1 + 2G0 depending on the velocity is defined as follows:

Cs
1 + 2G0 =

(
∂xv0 ∂zv1

∂zv1 −∂xv0

)
.

Proof. The proof follows the lines in [12] taking care of the small parameter and the definitions of the operators.
We must solve the Fokker–Planck equation (4.9):

(T + B̃)f =
1
ε
Ãf

with T , B̃ and Ã given by (4.4)−(4.5). First of all we take into account the development of the velocity v in the
definitions of the matrices involved in operators B̃ and Ã in order to get an equation with operators independent

of ε. For example for matrix C =
(

0 ∂zv
0 0

)
, using the ansatz of v, it reads at order one:

C = C0 + εC1 + O(ε2) with C0 =
(

0 ∂zv0

0 0

)
and C1 =

(
0 ∂zv1

0 0

)
. (4.20)

Thus, we write the terms up to order 1. From the l.h.s.:

(T + B̃)f = Tf + ∇q ·
(
(G + εE)qf

)
= T0f0 + ∇q ·

(
G0qf0

)
+ O(ε),

with T0f0 = ∂tf0 + v0∂xf0 + w0∂zf0.
Let us introduce the operator A by Af = 1

2∇q

(
M∇q

(
f
M

))
, then for the r.h.s. we write:

Ãf =
1

De0
Af −∇q ·

(
Cqf

)
=

1
De0

Af0 −∇q ·
(
C0qf0

)
+ ε

(
1

De0
Af1 −∇q ·

(
C1qf0

)
−∇q ·

(
C0qf1

))
+ O(ε2).

Then, the equation to solve reads:

T0f0 + ∇q ·
(
G0qf0

)
=

1
ε

( 1
De0

Af0 −∇q · (C0qf0) + ε
1

De0
Af1 − ε∇q · (C1qf0) − ε∇q · (C0qf1)

)
+ O(ε).

Thanks to the hypothesis f0 ∈ HMrad
and Proposition 4.1 we have that the matrix C0 vanishes, so:

T0f0 + ∇q ·
(
G0qf0

)
=

1
ε

( 1
De0

Af0 + ε
1

De0
Af1 − ε∇q · (C1qf0)

)
+ O(ε)

that can be also written as:

T0f0 + ∇q ·
(
(G0 + C1)qf0

)
=

1
ε

( 1
De0

Af0 + ε
1

De0
Af1

)
+ O(ε).

If we denote by Kf0 = T0f0 +∇q ·
(
(G0 +C1)qf0

)
and Q(f) = 1

De0
Af we have to solve the following equation:

Kf0 =
1
ε

(
Q(f0) + εQ(f1)

)
+ O(ε) (4.21)

that suits in the case studied in [12]. Following this work, to find f0 and f1 we match the terms of same orders,
obtaining that these solutions are given by:

• Af0 = 0

• 1
De0

Af1 = (I − Π)Kf0
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with Π the L2-orthogonal projection of HM onto the kernel of the adjoint space A∗ (denoted by N(A∗), that
coincides with N(A) because A is self-adjoint on HM ) (cf. [12]). It is defined as

Πϕ(q) = M(q)
∫
B

ϕ(q)dq,

for any function ϕ ∈ HM .
From the first equation we obtain directly (see Prop. 4.1) that

f0 = a0M(q).

We solve the equation in f1, that reads:

1
De0

Af1 = (I − Π)(T0f0 + ∇q · ((G0 + C1)qf0)).

By one hand we have that Π
(
∇q · ((G0 + C1)qf0)

)
= 0:

Π
(
∇q · ((G0 + C1)qf0)

)
= M(q)

∫
B
∇q · ((G0 + C1)qf0)dq = 0

and by other hand we have since f0 ∈ N(A) that ΠT0 = T0Π (cf. [12]), so:

(I − Π)T0f0 = T0f0 − ΠT0f0 = T0f0 − T0Πf0 = T0f0 − T0f0 = 0.

So the equation to solve becomes:

1
De0

Af1 = ∇q · (G0qf0) + ∇q · (C1qf0). (4.22)

We focus again on matrix C1 =
(

0 ∂zv1

0 0

)
that we divide in its symmetric and antisymmetric parts as follows:

C1 =
1
2

(
0 ∂zv1

∂zv1 0

)
+

1
2

(
0 ∂zv1

−∂zv1 0

)
=

1
2
(Cs

1 + Cas
1 ).

Now the term in the equation above containing C1 can be written as:

∇q · (C1qf0) =
1
2
∇q · ((Cs

1 + Cas
1 )qf0) = ∇q · (Cs

1qf0),

because for the antisymmetric part we have:

∇q · (Cas
1 qf0) = ∇q ·

[(
(∂zv1)q2

−(∂zv1)q1

)
a0M(q)

]
=

= a0

(
∂zv1q2

−∂zv1q1

)
∇qM(q) = a0

(
∂zv1q2

−∂zv1q1

)(
U(q)q1

U(q)q2

)t

= 0,

being U(q) = − 1
J

(
1 − q2

δ

)δ/2−1

. So finally we must solve:

1
De0

Af1 =
1
2
∇q · (2G0qf0 + Cs

1qf0).
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Thanks to the definition of A, it suffices to seek f1 as:

1
De0

∇q

(
f1

M

)
= a0(2G0 + Cs

1)q,

and the solution reads
f1 = De0a0((2G0 + Cs

1)q · q)M(q).

This is the unique possible solution to (4.22). To obtain the constant a0, we take f0 to the Fokker–Planck
equation and we integrate in B using the radial property, so we find that a0 is solution of:

∂ta0 + u0 · ∇a0 = 0. �

Remark 4.3. Notice that the radial hypothesis for f0 is equivalent to assume that ∂zv0 = 0. In Proposition 4.1
we proved that if f is radial, then the velocity does not depend on z at main order. If we assume now that
∂zv0 = 0, then the matrix C0 vanishes. Thus, the corresponding equation (4.16) reduces to

∇q ·
[
M∇q

(
f0

M

)]
= 0,

but since function M is radial, then f0 must be also radial. �

Remark 4.4 (About the radial hypothesis). As we explained before, the motivation of this assumption is to
find ∂zv0 = 0. This is the usual “motion by slices” property of the shallow-water systems that is needed to
develop the derivation (cf. [15]). The radial hypothesis is just the translation to the microscopic frame of the
classical shallow flows property. Furthermore in the reference works [10, 12], the solution of the non-stationary
Fokker–Planck equation has been studied in the case of small Deborah number. In these works the solution at
the leading order is also given by f0 = n0M(q). Then this part of the probability density function does not
contribute in the 1–2 component of the extra stress tensor due to the polymer chains, σ12

P0 = 0. This is also the
situation that we get here under the radial hypothesis, so it is not a very restrictive assumption for the whole
system. �

Explicit expression of the stress tensor. Following (3.7) the stress tensor σP is defined by:

σP = λ̃(〈F (q) ⊗ q〉 − n Id),

being n =
∫
B f(q)dq. The average 〈·〉 is what establish the relationship with the probability density f in the

next way:

〈ϕ〉 =
∫
B

ϕfdq. (4.23)

So taking into account the development of f taken in Proposition 4.2 and that σP = σP0 + εσP1 + O(ε2), we
can specify its terms as:

σP0 = λ̃(〈F (q) ⊗ q〉0 − n0 Id), σP1 = λ̃(〈F (q) ⊗ q〉1 − n1 Id).

Being 〈·〉i the corresponding average by taking fi respectively in (4.23) and so ni =
∫
B fi(q)dq for i = 0, 1.

Regarding the definition of n0 we must note that

n0 =
∫
B

f0(q)dq =
∫
B

a0M(q)dq = a0.

So from now on we will write f0 = n0M(q). After some calculations we get:

σP0 = γ0n0

(
1 0
0 1

)
, for γ0 = λ̃

(
πβ(3)

J
− 1
)

(4.24)
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and

σP1 = γ1n0De0

(
∂xv0 ∂zv1

∂zv1 −∂xv0

)
, for γ1 =

λ̃π

2J

(
β(5)

2
− δ2Eul

(
4,

δ

2
+ 1
))

. (4.25)

Note that these quantities correspond to the contribution to the friction effect due to the polymer presence into
the fluid that shall be taken into account for the shallow-water model.

Remark 4.5. In previous definitions we have denoted

β(p) =
∫ √

δ

0

rp

(
1 − r2

δ

)δ/2−1

dr

that can be solved as follows

β(p) =
1
2
δ

p+1
2 Eul

(
p + 1

2
,
δ

2

)
, Eul(x, y) =

∫ 1

0

tx−1(1 − t)y−1dt,

and we can also calculate J in (3.8) by Euler function:

J = πδEul
(

1,
δ

2
+ 1
)

.

The shallow-water system. Since we have the expression of σP up to order one, we focus now on the integrated
momentum equations taking care of new terms.

First order approximation. We write equations (4.12), (4.13) and (4.19) up to first order and we obtain:

p0(z) = − 1
Fr2

(z − (zb + h0)) + σ22
P0; (4.26)

∂th0 + ∂x(h0v0) = 0; (4.27)

∂tn0 + v0∂xn0 + w0∂zn0 = 0, (4.28)

where w0 is computed from the divergence free equation and using the boundary condition at the bottom (4.11):{
∂zw0 = −∂xv0;
w0 − v0∂xzb = 0 on z = zb;

so
w0 = v0∂xzb − (z − zb)∂xv0. (4.29)

Now we take them to equation (4.14) and we take into account that σP0 does not depends on z (see Eq. (4.24)).
Thus we get:

∂t(h0v0) + ∂x(h0v
2
0) +

1
2

1
Fr2

∂x(h2
0) = −α0Bv0 − 1

Fr2
h0 ∂xzb. (4.30)

As we can see in this equation neither pressure nor viscosity effects appear. We must search for the second order
approximation to introduce these effects into the model.

Second order approximation. Now we consider the development in Section 4.3 for all variables up to second
order and we define

ṽ = v0 + εv1, w̃ = w0 + εw1, p̃ = p0 + εp1, h̃ = h0 + εh1, f̃ = f0 + εf1, (4.31)
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together with σ̃P = σP0 + εσP1. We also consider the second order approximation of the mean curvature to the
surface K = ∂2

x(zb + h̃) + O(ε2). Equations (4.27)−(4.30) represents a shallow-water system with friction as a
formal approximation in O(ε) of the viscous hydrostatic system, and therefore of the Navier–Stokes equations.
But as has been pointed out in [15], we can improve this approximation by performing a correction of the
horizontal velocity depending on z, ṽ = ṽ(t, x, z). To do that we search for an expression for the velocity ṽ from
equation (4.6):

1
ε
μ0∂

2
z ṽ = ∂tv0 + v0∂xv0 + ∂xp0 − 1

ε
∂zσ

12
P0 − ∂zσ

12
P1 − ∂xσ11

P0 + O(ε).

By using (4.26), (4.30) and taking into account that σ12
P0 = 0, we have:

1
ε
μ0∂

2
z ṽ = − 1

h0
α0B ṽ|z=zb

− ∂zσ
12
P1 + O(ε).

At this stage we know the expression of σ12
P1 = τ(n0)∂zv1 with τ(n0) = γ1n0De0, so if we insert this into previous

equation:
1
ε
μ0∂

2
z ṽ = − 1

h0
α0B ṽ|z=zb

− ∂z(τ(n0)∂zv1) + O(ε).

Now we write ∂zv1 = ∂z(1
ε (ṽ − v0)) = 1

ε∂z ṽ since v0 does not depend on z. Thus

1
ε
∂z((μ0 + τ(n0))∂z ṽ) = − 1

h0
α0B ṽ|z=zb

+ O(ε).

Now we integrate twice from zb to z and use the first boundary condition in (4.11) to get:

ṽ = ṽ|z=zb
+ ε

α0B

h0
ṽ|z=zb

∫ z

zb

h0 − (χ − zb)
μ0 + τ(n0(χ))

dχ + O(ε2). (4.32)

This expression gives a more detailed horizontal velocity through a parabolic correction. Then we obtain the

average of the velocity as v̄ =
1
h

∫ zb+h

zb

ṽ dz:

v̄ = ξ−1ṽ|z=zb
+ O(ε2), (4.33)

where

ξ =

(
1 + ε

α0B

h2
0

∫ zb+h̃

zb

∫ z

zb

h0 − (χ − zb)
μ0 + τ(n0(χ))

dχdz

)−1

.

To deduce the system we must take also into account the first order terms in the pressure. So we calculate
∂x

∫ zb+h̃

zb
p dz from (4.12) and using (4.24) and (4.25), we find:

∂x

∫ zb+h̃

zb

p dz =
1
2

1
Fr2

∂x(h̃2) + ∂x(h̃ σ̃22
P ) − 2εμ0∂x(h0∂xv0) − εα0S∂x(h0∂

2
x(zb + h0)) + O(ε2). (4.34)

We insert this equation into (4.14) and we use (4.33) and last conditions in (4.10) and (4.11) for simplifications.
Dropping the O(ε2) we finally write the system:

∂th̃ + ∂x(h̃v̄) = 0; (4.35)

∂t(h̃v̄) + ∂x(h̃v̄2) +
1
2

1
Fr2

∂x(h̃2) − 4εμ0∂x(h̃∂xv̄)

+α0Bξv̄ − εα0S h̃∂3
x(zb + h̃) +

1
Fr2

h̃∂xzb = 0;

(4.36)
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where

ξ =

(
1 + ε

α0B

h̃2

∫ zb+h̃

zb

∫ z

zb

h̃ − (χ − zb)
μ0 + τ(n0(χ))

dχdz

)−1

and τ(n0) = γ1n0De0. (4.37)

The polymer density n0 is the solution of the transport equation:

∂tn0 + v̄∂xn0 + w0∂zn0 = 0. (4.38)

where from the divergence free equation and condition (4.11), w0 is given by

w0 = v̄∂xzb − (z − zb)∂xv̄. (4.39)

As commonly we obtain a corrected friction term for the second order approximation. If we look at the equa-
tion (4.30), the friction term, α0Bv0, depends only on the friction coefficient α0B while in the system above the
friction terms reads as α0Bξv̄. This new parameter ξ contains the polymer effects into the fluid, represented by
γ1, n0 and De0. This effect results in a modification of the fluid viscosity, μ0 + γ1n0De0, what is reasonable for
very diluted suspensions and it is coherent with the viscoelastic fluid behaviour for small Deborah number. As
one can found in [19], the polymers modify several flow characteristics of the solvent, in particular their presence
increases the viscosity of the solvent, and the non-Newtonian viscosity increases the friction coefficient. Both
properties are recovered by the proposed model.

Nevertheless, it is also known that the fluid becomes elastic, that is, the polymers introduce stress-relaxation
characteristics into the fluid. We do not find the effect of the elasticity in the deduced model because in this
case it is of order ε2, as we explain in the next section.

On the other hand, we can also observe that since the polymer density n0 is just transported by the fluid −
given by equation (4.38) −, the friction term will affect the dynamics just if the initial mass density holds some
inhomogeneity.

Written in dimensional form, system (2.11)−(2.15) represents a formal approximation in O(ε2) of the viscous
hydrostatic system and therefore of the Navier–Stokes equations generalizing to FENE type model the paper
written in [15].

5. Intermediate Deborah number regime

The Deborah number (3.2) is a measure of the relevance of the viscoelastic effects compared to the inertial
effects. Thus, at small Deborah number (De � 1) the elasticity of the fluid is irrelevant in that regime and the
drag force is comparable to the Newtonian fluid case. At intermediate values of De the elasticity of the fluid
begins to affect the sedimentation of the particles and an important drag reduction occurs. When higher values
of the Deborah number are found, the drag increases again and it exceeds the Newtonian value [16].

However the Deborah number is not the only parameter that influence on the viscoelastic effects. In fact we
can introduce the elasticity number E as the ratio between the Deborah number and the Reynolds number,
E = De/Re. As well as we can study the values of Deborah number in order to affect the elasticity of a fluid,
we must also take into account the relative order with the Reynolds number.

Many works have been devoted to the study of fluids at small De number [16,18,25] and it is put in evidence
that the behavior of the flow in this case is equivalent to the case of a Newtonian fluid with a proper viscosity.
Nevertheless it is also shown (in theoretical and experimental way) that there is a difference in their behaviour.
For example in [19] it is shown that these “slightly viscoelastic fluids” (De � 1) decay faster than Newtonian
fluids, this means that they have the characteristic of faster damping compared to regular viscous fluids. The
damping force is similar to a “friction” force which resists motion via viscous friction. So the viscosity of the
fluid acts faster in viscoelastic fluids slowing down quicker the motion than in Newtonian fluids.
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So as the small Deborah number regime is interesting, there is a lot of flows that cannot be categorized in this
family. We want in this section to show some ideas about how to tackle the behavior of fluids at intermediate
Deborah number. That means that we are not able to solve the Fokker–Planck equation as above and to obtain
an explicit value for the stress tensor σP . Anyway the idea is to consider the coupled system (2.7)−(2.10) that
keeps being true in all cases. Thus, we focus on the derivation of a shallow-water model.

In previous sections we took the assumption of De and 1
Re to be of order ε, so the fluid we have analyzed

count on an elasticity of order ε2, that does not appear in the final system. Here we focus on intermediate
Deborah number. We provide the main steps for reader’s convenience. In this section we also consider zb = 0.
Asymptotically viscous flows. In this part, we consider the asymptotic regime:

αS = εα0S , αB = εα0B

instead of those done in (4.1). We follow the same process than in Section 4.

First order derivation. We write equations (3.19), (3.22) and (3.25) at principal order, we get:

1
Re

∂2
zv0 = O(ε);

1
Re

∂zv0|z=h = O(ε);
1

Re
∂zv0|z=0 = O(ε);

so we deduce that the horizontal velocity does not depend on z at first order: v0 = v0(t, x). We first look at
equation (3.20) to obtain the pressure, we write:

∂zp = ∂zσ
22
P + ε∂xσ12

P − 1
Fr2

+
1

Re
(∂x∂zv + 2∂2

zw) + O(ε2)

and we integrate from z to h to get:

p(z) = σ22
P − ε

∫ h

z

∂xσ12
P − 1

Fr2
(z − h) +

1
Re

(∂xv − ∂x(v|z=h) + 2∂zw)

−
[
−p + σ22

P − 1
Re

∂xh∂zv + 2
1
Re

∂zw

]
|z=h

+ O(ε2).

From (3.23) we have
[
−p + σ22

P − 1
Re

∂xh∂zv + 2
1
Re

∂zw

]
|z=h

= εα0SK + O(ε2), so finally we get

p(z) = σ22
P − ε

∫ h

z

∂xσ12
P − 1

Fr2
(z − h) +

1
Re

(∂xv − ∂x(v|z=h) + 2∂zw) − εα0SK + O(ε2). (5.1)

Now we integrate (3.19) in [0, h] and we just consider terms of order ε0:∫ h

0

(∂t(hv0) + v0∂xv0 + w0∂zv0) +
∫ h

0

∂xp0 =
∫ h

0

∂xσ11
P0 +

1
Re

∫ h

0

(∂z∂xw0 + 2∂2
xv0).

We use conditions (3.24) and (3.26) to simplify the transport term and the Leibnitz formula to write:

∂t(hv0) + ∂x(hv2
0) + ∂x

∫ h

0

p0 = ∂x

∫ h

0

σ11
P0 + 2

1
Re

∂x

∫ h

0

∂xv0

+
[
∂xhp0 − σ11

P0∂xh +
1

Re
∂xw0 − 2

1
Re

∂xh∂xv0

]
|z=h

− 1
Re

∂xw0|z=0.

Taking the terms of order ε in condition (3.22) we find that the term in z = h is of order O(ε), if we do so with

condition (3.25) we get that − 1
Re

∂xw0|z=0 = −α0Bv0. We calculate the term of pressure, from (5.1):

p0(z) = σ22
P0 −

1
Fr2

(z − h) +
1

Re
(∂xv0 − ∂xv0 + 2∂zw0) + O(ε),
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so taking into account that v0 does not depend on z and the divergence free condition we get

∂x

∫ h

0

p0 = ∂x

∫ h

0

σ22
P0 +

1
2

1
Fr2

∂xh2 − 2
1

Re
∂x(h∂xv0) + O(ε).

We finally write the approximated model at order 1:

∂t(hv0) + ∂x(hv2
0) +

1
2

1
Fr2

∂xh2 − 4
1

Re
∂x(h∂xv0) = ∂x

∫ h

0

(σ11
P0 − σ22

P0) − α0Bv0.

6. Numerical results

In this section we present some numerical simulations corresponding to the case 1: low Deborah num-
ber regime. Thus, we consider the system derived previously written in dimensional form given by equa-
tions (2.11)−(2.15). Our main objective is to point out the influence of the polymer presence into the flow,
so we will compare the solution of the obtained model with the solution of the viscous Saint-Venant system
presented in [15].

We consider a simplified model for which we don’t take into account the surface tension effect (αS = 0) and
we assume that n0 does not depend on z, so we can write n0 as the solution of

∂tn0 + v̄∂xn0 = 0

or equivalently
∂t(h̃n0) + ∂x(v̄h̃n0) = 0.

Thanks to this assumption, we also find a simplification of the expression of the drag coefficient ξ from (2.13):

ξ =

(
1 +

αBh̃

3(μ + τ(n0))

)−1

with τ(n0) = γ̄1n0De.
From now on we drop the “tilde” and “bar” notation for the sake of simplicity. Thus, we denote by (SV) the
viscous Saint-Venant system and by (S2) the second order approximated system obtained in this work. They
read as follows:

(SV)

{
∂th + ∂x(hv) = 0;

∂t(hv) + ∂x(hv2 +
1
2
gh2) − 4μ∂x(h∂xv) = −ξSV αBv − gh∂xzb;

(6.1)

(S2)

⎧⎪⎨⎪⎩
∂th + ∂x(hv) = 0;

∂t(hv) + ∂x(hv2 +
1
2
gh2) − 4μ∂x(h∂xv) = −ξ αBv − gh∂xzb;

∂t(hn) + ∂x(vhn) = 0;

(6.2)

with

ξSV =
(

1 +
αBh

3μ

)−1

and ξ =
(

1 +
αBh

3(μ + τ(n))

)−1

for τ(n) = γ1nDe. We are able to write the system (S2) under the classical increased shallow-water equations
formulation (see [13, 38]). In our case the polymer density n acts like a passive scalar transported by the fluid
through the velocity v. If we define the variable r = hn and the discharge q = hv, the system above can be
written under the following matricial form for conservative variables:

∂tW + ∂xF (W ) = G(x, W ) + R(x, W )
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γ1
λ respect to the parameter δ.

where

W =

⎛⎝h
q
r

⎞⎠ ; F (W ) =

⎛⎝ q
q2

h + 1
2gh2

qr
h

⎞⎠ ; G(x, W ) =

⎛⎝ 0
−gh∂xzb

0

⎞⎠ .

The viscous and friction terms are included in term R:

R(x, W ) =

⎛⎝ 0
4μ∂x(h∂x

q
h ) − ξαB

q
h

0

⎞⎠ .

The polymer properties are collected in the coefficient ξ, in particular through the parameters γ1 and De in
τ(n). If we explicit the expression of γ1 from (4.25) and using Remark 4.5 we get:

γ1 = λ
δ

δ + 4

(
1 − 24

(δ + 6)(δ + 8)

)
,

with δ related to the maximum elongation of the polymer spring, that generally satisfies δ ≥ 10, (cf. [12,34]) and
λ related to the temperature, the Boltzman constant and the number of polymer molecules per unit volume,
we’ll take different values to check its influence on the results. The ratio γ1

λ is called dimensionless elastic
viscosity [12], in Figure 1 we show the behaviour of this parameter respect to δ. We can see that there is an
important increasing tendency in the range of δ ∈ [10, 200] approximately, then the value of γ1

λ tends to the
unity as δ increases. In the results presented below we take the value δ = 100 with the aim of obtaining the
greatest influence of this parameter and we vary the parameter λ that takes the values 10, 102, 103. In order to
consider the asymptotic regime as in Section 4, the viscosity is μ = εμ0, the friction coefficient is αB = εα0B

and the Deborah number is De = εDe0. In the sequel we fix ε = 10−3, μ0 = 1, De0 = 1 and α0B takes the
values 1, 10 or 100, similarly to the study developed in [15].

To solve numerically these systems we have used the two-second order WAF method (see [13, 38]). For all
test performed below we take Neumann conditions at the boundary.

6.1. Test 1: Flat bottom and constant polymer density

We consider a diluted solution of polymers and we solve a “dam” break problem on a wet floor with flat
bottom zb = 0. We consider a domain of length L = 50 discretized by 200 points, the CFL condition is fixed as
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Figure 2. a) Values of ξSV and ξ respect to the friction coefficient αB . b) Graph corresponding
to data in Table 1.

Table 1. Friction values respect to the coefficient αB.

αB 10−3 10−2 10−1

max |ξ−ξSV |
max |ξ| 0.4990 0.8991 0.9407

max |ξαBv| 0.0060 0.0593 0.5634

max |ξSV αBv| 0.0046 0.0166 0.0276

0.9 and the final time is t = 3. The initial conditions are given by:

h(t = 0) =
{

3 x < 10
0.1 x ≥ 10 ; q(t = 0) =

{
3.5 x < 10
0 x ≥ 10 ; r(t = 0) = h(t = 0)nc,

where the constant polymer density n = nc.
This test is devoted to study the influence in the flow behaviour of the friction coefficient αB and the

parameters coming from the polymer effects, in particular depending on nc and λ. First, for fixed nc = 1 we
will study different values for λ and αB and secondly we will fix these two values to see the influence of the
polymer density nc.

If we fix the value of λ we obtain different solutions depending on αB. Notice that the effect of this parameter
is similar for the two systems (SV) and (S2) appearing in the friction term and in the definition of ξ and ξSV .
Nevertheless we will see that the system (S2) is more sensitive to αB than the Saint-Venant system due to the
influence of the polymer parameter γ1.

Influence of the friction coefficient. We take λ = 103 fixed to check what is the effect of the friction coefficient
in the behaviour of the flow. First of all we would like to highlight some details into the models in question. As
we have mentioned before, the difference between (SV) and (S2) falls on the term τ(n), only depending on the
polymer properties, whos influence appears into the friction term. Thus, the larger is the difference |ξ − ξSV |,
the larger the difference between the solutions. In Figure 2a we show the values of the coefficients ξSV and ξ
respect to the friction coefficient αB. In particular for this graph we have taken n = 1 and h = 2 to make the
values of ξ and ξSV only depend on αB. We can appreciate that there is an important difference between the two
terms but the real difference in the system comes from the friction term −ξαBv. Hence in Table 1 we show the
maximum values obtained for the difference between the coefficients ξ and ξSV and the corresponding friction
terms. These results are also shown in Figure 2b. Thus, we can say that the friction coefficient αB has not a
great influence on the Saint-Venant system because the friction term keeps small. Nevertheless for the case of
the system (S2) we find more significant differences in the friction term, mainly for αB = 10−2 and αB = 10−1.
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Figure 3. Test 1: height (above) and velocity (below) for different values of αB.

In Figure 3 we show the solution of the problem, the height on the top and the velocity below for the different
values of αB . The (SV) solution for the three different values of αB are superimposed at this scale due to the
smallness of the friction term. In fact, it is for this reason that the solution of the system (S2) for αB = 10−3 is
very close to those of (SV). We can appreciate that when αB gets larger, and so the friction term, the solutions
become more different.

Influence of the parameter λ. As a result of the previous study, to check the importance of the friction term, we
fix in this part αB = 0.1 and vary the parameter λ to see its influence on the solution between the values 10,
102 and 103. Notice that with these values, the new term τ(n) varies between 0.01, 0.1 and 1 (assuming n at
order 1). Following the same idea as above, we first look at the values of the terms regarding the friction effect.
We show in Figure 4a the values of ξ and ξSV respect to τ(n) for fixed h = 2 and n = 1 (so ξSV is constant). We
can see that the difference is almost of the same order than before but now the coefficient ξ has an important
increasing for small values of τ(n). This behaviour will affect to the solution who will get more sensitive to
the variation of λ. Let us check the values of the friction term in this case, they are shown in Table 2 and in
Figure 4b. Now we obtain large values for |ξ − ξSV | but also for the friction term, this fact will give us more
important differences between the solutions.

Finally in Figure 5, we show the solution of the problem. Since αB is fixed, we have just one solution of the
(SV) system. We can really see the influence of the polymers presence into the flow, that gets slower for larger
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Figure 4. a) Values of ξSV and ξ respect to the parameter τ(n). b) Graph corresponding to
data in Table 2.
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Figure 5. Test 1: height (above) and velocity (below) for different values of λ.

Table 2. Friction values respect to the parameter λ.

λ 10 102 103

max |ξ−ξSV |
max |ξ| 0.6966 0.8436 0.9407

max |ξαBv| 0.1712 0.4165 0.5634

max |ξSV αBv| 0.0276 0.0276 0.0276
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Figure 6. Test 1: height (above) and velocity (below) for different values of n.

values of λ. Thus, for λ = 10 we obtain that the solution of (S2) is close to the Saint-Venant solution, but we
can appreciate that the velocity is lower. This difference is more noticeable for higher values of λ for which the
profile of the front also changes respect to the (SV) solution.

Influence of the polymer density nc. In this case we fix the friction coefficient as before to αB = 0.1 and the
parameter λ = 103. We vary the polymer density nc that takes the values 0.1, 1 and 10. We obtain similar
values than in the case before, because the role of the coefficient γ1 and n is the same in the function τ(n). In
Figure 6 we show the height and the velocity for all cases. Note that for higher values of the polymer density
the velocity decreases and then the fluid moves slowly. As one could hope, for smaller values of nc the solution
is closer to those of (SV) system because the term τ(n) decreases so ξ becomes closer to ξSV . The values of the
friction term are shown in Table 3, where we observe that these values matches with the behaviour of the fluid
in Figure 6 and the main difference is found for the smaller value of nc.

6.2. Test 2: Non constant bottom and polymer density

In this second test we consider a non flat bottom and a non constant polymer density in a domain of length
L = 50, the space step is Δx = 1/20, the CFL condition is fixed as 0.9 and the final time is t = 4. The initial
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Table 3. Friction values respect to the parameter nc.

nc 0.1 1 10
max |ξ−ξSV |

max |ξ| 0.9315 0.9407 0.9416

max |ξαBv| 0.4465 0.5634 0.5788

max |ξSV αBv| 0.0276 0.0276 0.0276

Table 4. Friction values respect to the parameter λ.

λ 10 102 103

max |ξ−ξSV |
max |ξ| 0.8417 0.9177 0.9497

max |ξαBv| 0.3901 0.5975 0.6328

max |ξSV αBv| 0.0455 0.0460 0.0462
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Figure 7. Test 2: Initial conditions.

conditions, represented in Figure 7, are given by:

h(t = 0) =
{

2 x < 25
0.1 x ≥ 25 ; v(t = 0) = 0; n(t = 0) =

{
2 x < 25
0 x ≥ 25 ,

and the bottom is zb =
{

1 x < 25
0 x ≥ 25 .

We consider αB = 0.1 and the parameter λ takes values 10, 102 or 103.
In Table 4 we show the values of the friction terms appearing in the models. We can see that similarly to

the Test 1, the friction term for the (SV) system is very small in comparison with those for the (S2) model.
We represent in Figure 11 the friction terms −ξαBv and −ξSV αBv. Since we consider a linear friction law, the
profile of the velocity and the friction term are directly connected (see Figs. 9 and 11), as the velocity increases
the friction increase and slow the acceleration of the fluid. Actually the polymer effect is just seen in the friction
coefficient, thus, the bigger is λ, the bigger the friction coefficient becomes. As this term has the opposite sign
on the conservation equation, it makes the velocity decrease, being lower for higher values of λ, as we observe
in Figure 9. In consequence, there will be a great influence of the polymer presence into the flow, as we show in
Figures 8, 9 and 10, where we represent the height, the velocity and the polymer density profiles respectively.
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Figure 8. Test 2: Height solution of the systems (SV) and (S2).
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Figure 9. Test 2: Velocity solution of the systems (SV) and (S2).
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Figure 10. Test 2: Polymer density solution of the systems (SV) and (S2).
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Figure 11. Test 2: Friction term for the different values of λ in (S2) and for the (SV) system.

The polymer effect on the velocity affects the behaviour of the height and the transport of the polymer density
n, mainly after the jump. We can see how for increasing values of λ the absolute value of the friction term also
increases and this makes the fluid gets slow, who in turn influences on the profile of the height. For high values
of λ the height and the distance reached by the front decrease.
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[32] G. Narbona-Reina, J.D. Zabsonré, E.D. Fernández-Nieto and D. Bresch, Derivation of a bilayer model for Shallow Water
equations with viscosity. Numerical validation. CMES 43 (2009) 27–71.

[33] A. Oron, S.H. Davis and S.G. Bankoff, Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69 (1997) 931–980.

[34] H.C. Ottinger, Stochastic Processes in Polymeric Fluids. Springer-Verlag, Berlin (1996).

[35] M. Reiner, The Deborah number, Phys. Today 12 (1964) 62.

[36] S. Shao and E.Y.M. Lo, Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface.
Adv. Water Resources 26 (2003) 787–800.

[37] J.A. Tichy and M.F. Modest, A Simple Low Deborah Numer Model for Unsteady Hydrodynamic Lubrication, Including Fluid
Inertia. J. Rheology 24 (1980) 829–845.

[38] E.F. Toro, Shock-Capturing Methods for Free-Surface Shallow Flows. John Wiley and Sons, England (2001).

[39] H. Zhang and P. Zhang, Local Existence for the FENE-Dumbbell Model of Polymeric Fluids. Arch. Ration. Mech. Anal. 181
(2006) 373–400.


	Introduction
	The micro-macro initial model and the asymptotic systems
	The micro-macro initial model
	Navier--Stokes/Fokker--Planck system
	Spring force expressions
	Coupled FENE type system with free boundary conditions

	The asymptotic shallow-water type systems

	Adimensionnalization
	Adimensional microscopic description
	Adimensional macroscopic equations/boundary conditions

	Low Deborah number regime
	Range of coefficients and system to be studied
	Pressure up to order one/integrated horizontal components
	Second order shallow-water type approximation
	Radial hypothesis: Explicit drag effect through a nonlocal term


	Intermediate Deborah number regime
	Numerical results
	Test 1: Flat bottom and constant polymer density
	Test 2: Non constant bottom and polymer density

	References

