On the numerical modeling of deformations of pressurized martensitic thin films
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 35 (2001) no. 3, p. 525-548

We propose, analyze, and compare several numerical methods for the computation of the deformation of a pressurized martensitic thin film. Numerical results have been obtained for the hysteresis of the deformation as the film transforms reversibly from austenite to martensite.

Classification:  49J45,  65N15,  65N30,  74B20,  74G65,  74K35,  74S05
Keywords: thin film, finite element, martensitic transformation, active materials
@article{M2AN_2001__35_3_525_0,
     author = {B\v el\'\i k, Pavel and Brule, Timothy and Luskin, Mitchell},
     title = {On the numerical modeling of deformations of pressurized martensitic thin films},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {35},
     number = {3},
     year = {2001},
     pages = {525-548},
     zbl = {1062.74047},
     mrnumber = {1837083},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2001__35_3_525_0}
}
Bělík, Pavel; Brule, Timothy; Luskin, Mitchell. On the numerical modeling of deformations of pressurized martensitic thin films. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 35 (2001) no. 3, pp. 525-548. http://www.numdam.org/item/M2AN_2001__35_3_525_0/

[1] R. Adams, Sobolev spaces. Academic Press, New York (1975). | MR 450957 | Zbl 0314.46030

[2] J.H. Argyris, I. Fried and D.W. Scharpf, The TUBA family of plate elements for the matrix displacement method. Aero. J. Roy. Aero. Soc. 72 (1968) 701-709.

[3] N.W. Ashcroft and N.D. Mermin, Solid State Physics. Saunders College Publishing, Orlando (1976).

[4] J. Ball and R. James, Fine phase mixtures as minimizers of energy. Arch. Rat. Mech. Anal. 100 (1987) 13-52. | Zbl 0629.49020

[5] J. Ball and R. James, Proposed experimental tests of a theory of fine microstructure and the two-well problem. Phil. Trans. R. Soc. Lond. A 338 (1992) 389-450. | Zbl 0758.73009

[6] M. Bernadou and K. Hassan, Basis functions for general Hsieh-Clough-Tocher triangles, complete or reduced. Internat. J. Numer. Methods Engrg. 17 (1981) 784-789. | Zbl 0478.73050

[7] K. Bhattacharya and R.D. James, A theory of thin films of martensitic materials with applications to microactuators. J. Mech. Phys. Solids 47 (1999) 531-576. | Zbl 0960.74046

[8] K. Bhattacharya, B. Li and M. Luskin, The simply laminated microstructure in martensitic crystals that undergo a cubic to orthorhombic phase transformation. Arch. Rat. Mech. Anal. 149 (1999) 123-154. | Zbl 0942.74056

[9] S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Springer-Verlag, New York (1994). | MR 1278258 | Zbl 0804.65101

[10] P. Bělík, T. Brule and M. Luskin, Numerical modelling of a temperature-operated martensitic microvalve. http://www.math.umn.edu/~luskin/research/valve/.

[11] P. Bělík and M. Luskin, Stability of microstructure for tetragonal to monoclinic martensitic transformations. ESAIM: M2AN 34 (2000) 663-685. | Numdam | Zbl 0981.74042

[12] C. Carstensen and P. Plecháč, Numerical solution of the scalar double-well problem allowing microstructure. Math. Comp. 66 (1997) 997-1026. | Zbl 0870.65055

[13] C. Carstensen and P. Plecháč, Adaptive algorithms for scalar non-convex variational problems. Appl. Numer. Math. 26 (1998) 203-216. | Zbl 0894.65029

[14] M. Chipot, C. Collins and D. Kinderlehrer, Numerical analysis of oscillations in multiple well problems. Numer. Math. 70 (1995) 259-282. | Zbl 0824.65045

[15] M. Chipot and D. Kinderlehrer, Equilibrium configurations of crystals. Arch. Rat. Mech. Anal. 103 (1988) 237-277. | Zbl 0673.73012

[16] M. Chipot and S. Müller, Sharp energy estimates for finite element approximations of nonconvex problems. Preprint (1997).

[17] P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). | MR 520174 | Zbl 0383.65058

[18] R.W. Clough and J.L. Tocher, Finite element stiffness matrices for analysis of plates in bending. In Proceedings of the conference on matrix methods in structural mechanics. Wright Patterson A.F.B., Ohio (1965) 515-545.

[19] C. Collins, Computation of twinning. In Microstructure and phase transitions. J. Ericksen, R. James, D. Kinderlehrer and M. Luskin Eds. IMA Vol. Math. Applic. 54, Springer-Verlag, New York (1993) 39-50. | Zbl 0797.73049

[20] C. Collins and M. Luskin, The computation of the austenitic-martensitic phase transition. In Partial differential equations and continuum models of phase transitions. M. Rascle, D. Serre and M. Slemrod Eds. Lect. Notes Phys. 344, Springer-Verlag, Berlin (1989) 34-50. | Zbl 0991.80502

[21] C. Collins, M. Luskin and J. Riordan, Computational results for a two-dimensional model of crystalline microstructure. In Microstructure and phase transitions. J. Ericksen, R. James, D. Kinderlehrer and M. Luskin Eds. IMA Vol. Math. Applic. 54, Springer-Verlag, New York (1993) 51-56. | Zbl 0797.73048

[22] G. Dolzmann, Numerical computation of rank-one convex envelopes. SIAM J. Numer. Anal. 36 (1999) 1621-1635. | Zbl 0941.65062

[23] J.W. Dong, L.C. Chen, C.J. Palmstrøm, R.D. James and S. Mckernann, Molecular beam epitaxy growth of ferromagnetic single crystal (001) Ni 2 MnGa on (001) GaAs. Appl. Phys. Lett. 75 (1999) 1443-45.

[24] D.A. Dunavant, k High degree efficient symmetrical Gaussian quadrature rules for the triangle. Internat. J. Numer. Methods Engrg. 21 (1985) 1129-1148. | Zbl 0589.65021

[25] G.B. Folland, Real analysis. Modern techniques and their applications. John Wiley & Sons, Inc., New York (1984). | MR 767633 | Zbl 0549.28001

[26] M. Giaquinta. Calculus of variations. Springer-Verlag, Berlin (1996). | Zbl 0853.49001

[27] D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order. Springer-Verlag, Berlin (1998). | Zbl 0562.35001

[28] R. Glowinski, Numerical methods for nonlinear variational problems. Springer-Verlag, New York (1984). | MR 737005 | Zbl 0536.65054

[29] P.-A. Gremaud, Numerical analysis of a nonconvex variational problem related to solid-solid phase transitions. SIAM J. Numer. Anal. 31 (1994) 111-127. | Zbl 0797.65052

[30] M. Gurtin, Topics in finite elasticity. SIAM, Philadelphia (1981). | MR 599913

[31] R.D. James and R. Rizzoni, Pressurized shape memory thin films. J. Elasticity 59, special issue in honor of Roger Fosdick, D. Carlson Ed. (2000) 399-436. | Zbl 0990.74038

[32] P. Krulevitch, A.P. Lee, P.B. Ramsey, J.C. Trevino, J. Hamilton and M.A. Northrup, Thin film shape memory alloy microactuators. Journal of Microelectromechanical Systems 5 (1996) 270.

[33] M. Kružík, Numerical approach to double well problems. SIAM J. Numer. Anal. 35 (1998) 1833-1849. | Zbl 0929.49016

[34] P. Lascaux and P. Lesaint, Some nonconforming finite elements for the plate bending problem. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. R-1 (1975) 9-53. | Numdam | Zbl 0319.73042

[35] B. Li and M. Luskin, Finite element analysis of microstructure for the cubic to tetragonal transformation. SIAM J. Numer. Anal. 35 (1998) 376-392. | Zbl 0919.49020

[36] B. Li and M. Luskin, Nonconforming finite element approximation of crystalline microstructure. Math. Comp. 67 (1998) 917-946. | Zbl 0901.73076

[37] B. Li and M. Luskin, Approximation of a martensitic laminate with varying volume fractions. ESAIM: M2AN 33 (1999) 67-87. | Numdam | Zbl 0928.74012

[38] Z. Li, Simultaneous numerical approximation of microstructures and relaxed minimizers. Numer. Math. 78 (1997) 21-38. | Zbl 0890.65067

[39] D.G. Luenberger, Introduction to linear and nonlinear programming. Addison-Wesley, Reading, Mass. (1973). | Zbl 0297.90044

[40] M. Luskin, Approximation of a laminated microstructure for a rotationally invariant, double well energy density. Numer. Math. 75 (1996) 205-221. | Zbl 0874.73060

[41] M. Luskin, On the computation of crystalline microstructure. Acta Numer. 5 (1996) 191-257. | Zbl 0867.65033

[42] M. Luskin and L. Ma, Analysis of the finite element approximation of microstructure in micromagnetics. SIAM J. Numer. Anal. 29 (1992) 320-331. | Zbl 0760.65113

[43] L.S.D. Morley, The triangular equilibrium element in the solution of plate bending problems. Aero. Quart. 19 (1968) 149-169.

[44] P. Pedregal, On the numerical analysis of non-convex variational problems. Numer. Math. 74 (1996) 325-336. | Zbl 0858.65059

[45] E. Polak, Computational methods in optimization. Academic Press, New York (1971). | MR 282511

[46] T. Roubíček, Numerical approximation of relaxed variational problems. J. Convex Anal. 3 (1996) 329-347. | Zbl 0881.65058

[47] H.L. Royden, Real analysis. 3rd edn, Macmillan Publishing Company, New York (1988). | MR 1013117 | Zbl 0704.26006

[48] W. Rudin, Functional analysis. McGraw-Hill, New York (1973). | MR 365062 | Zbl 0253.46001

[49] Z. Shi, Error estimates of Morley element. Chinese J. Num. Math. Appl. 12 (1990) 102-108.