Simulation and design of extraction and separation fluidic devices
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 35 (2001) no. 3, p. 513-523

We present the combination of a state control and shape design approaches for the optimization of micro-fluidic channels used for sample extraction and separation of chemical species existing in a buffer solution. The aim is to improve the extraction and identification capacities of electroosmotic micro-fluidic devices by avoiding dispersion of the extracted advected band.

Nous présentons la combinaison de deux problèmes d'optimisation et de contrôle d'état pour les configurations de canaux micro-fluidique. Ces dispositifs sont utilisés pour l'extraction et la séparation de composants chimiques présents dans une solution. Le but est, dans un premier temps, l'amélioration de la phase de l'extraction par le contrôle de la dispersion du front. Ceci se fait par l'application d'un champs électrique. L'on s'intèresse ensuite à l'optimisation du canal, permettant la séparation, par une minimisation de la dispersion induite par les coudes.

Classification:  37NXX,  37N35,  68W25,  74M25,  74PXX,  74SXX
Keywords: fluidic channels, electroosmosis, optimization and control of distributed systems
@article{M2AN_2001__35_3_513_0,
     author = {Mohammadi, Bijan and Santiago, Juan G.},
     title = {Simulation and design of extraction and separation fluidic devices},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {35},
     number = {3},
     year = {2001},
     pages = {513-523},
     zbl = {1008.37052},
     mrnumber = {1837082},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2001__35_3_513_0}
}
Mohammadi, Bijan; Santiago, Juan G. Simulation and design of extraction and separation fluidic devices. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 35 (2001) no. 3, pp. 513-523. http://www.numdam.org/item/M2AN_2001__35_3_513_0/

[1] C.T. Culbeston, S.C. Jacobson and J. Ramsey, Dispersion sources for compact geometries on microchips. Analytical Chemistry 70 (1998) 3781-3789.

[2] J.I. Molho, A.E. Herr, B.P. Mosier, J.G. Santiago, T.W. Kenny, R.A. Brennen and G.B. Gordon, Designing corner compensation for electrophoresis in compact geometries, in Proc. Micro total analysis systems, Enschelde, The Netherlands, May 14-18, 2000. Kluwer Academic, Hingham (2000) 287-290.

[3] B. Mohammadi, J.I. Molho and J.G. Santiago, Incomplete sensitivities in the design of minimal dispersion fluidic channels. Comp. Meth. Appl. Mech. Eng. (submitted). | Zbl 1039.76014

[4] B. Mohammadi, J.I. Molho and J.G. Santiago, Optimization of turn geometries for on-chip electrophoresis. Analytical Chemestry 73 (2001) 1350-1360.

[5] B. Mohammadi, Practical applications to fluid flows of automatic differentiation for design problems. VKI Lecture Series 4S-05 (1997) 55-84.

[6] B. Mohammadi, A new optimal shape design procedure for inviscid and viscous turbulent flows. Internat. J. Numer. Methods Fluids 25 (1997) 183-203. | Zbl 0892.76071

[7] B. Mohammadi and O. Pironneau, Applied Shape Design for Fluids. Oxford Univ. Press, Oxford (2001). | MR 1835648

[8] B. Mohammadi, Flow control and shape optimization in aeroelastic configurations. AIAA 99-0182 (1999).

[9] R.F. Probstein, Physicochemical hydrodynamics. Wiley, New York (1995).

[10] H. Attouch and R. Cominetti, A dynamical approach to convex minimization coupling approximation with the steepest descent method. J. Differential Equations 128 (1996) 519-540. | Zbl 0886.49024

[11] W. Squire and G. Trapp, Using complex variables to estimate derivatives of real functions. SIAM Review 10 (1998) 110-112. | Zbl 0913.65014