Asymptotic analysis of magnetic induction with high frequency for solid conductors
ESAIM: Modélisation mathématique et analyse numérique, Volume 32 (1998) no. 6, pp. 651-669.
@article{M2AN_1998__32_6_651_0,
     author = {Coulaud, Olivier},
     title = {Asymptotic analysis of magnetic induction with high frequency for solid conductors},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {651--669},
     publisher = {Elsevier},
     volume = {32},
     number = {6},
     year = {1998},
     mrnumber = {1652668},
     zbl = {0915.65125},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1998__32_6_651_0/}
}
TY  - JOUR
AU  - Coulaud, Olivier
TI  - Asymptotic analysis of magnetic induction with high frequency for solid conductors
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1998
SP  - 651
EP  - 669
VL  - 32
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/item/M2AN_1998__32_6_651_0/
LA  - en
ID  - M2AN_1998__32_6_651_0
ER  - 
%0 Journal Article
%A Coulaud, Olivier
%T Asymptotic analysis of magnetic induction with high frequency for solid conductors
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1998
%P 651-669
%V 32
%N 6
%I Elsevier
%U http://www.numdam.org/item/M2AN_1998__32_6_651_0/
%G en
%F M2AN_1998__32_6_651_0
Coulaud, Olivier. Asymptotic analysis of magnetic induction with high frequency for solid conductors. ESAIM: Modélisation mathématique et analyse numérique, Volume 32 (1998) no. 6, pp. 651-669. http://www.numdam.org/item/M2AN_1998__32_6_651_0/

[1] O. Besson, J. Bourgeois, P. Chevalier, J. Rappaz and R. Touzani, Numerical modelling of electromagnetic casting processes. Journal of Computational Physics 92, 2 (1991), 482-507. | MR | Zbl

[2] J. P. Brancher, J. Etay and O. Sero-Guillaume, Formage d'une lame. J.M.T.A. 2, 6 (1983), 976-989. | Zbl

[3] O. Coulaud, Modélisation haute fréquence en magnétohydrodynamique: aspect magnétique. Tech. Rep. 2407, INRIA, 1994.

[4] O. Coulaud, Asymptotic analysis of magnetic induction with high frequency for liquid conductors. Tech. Rep. In Preparation, INRIA, 1997.

[5] O. Coulaud and A. Henrot, A nonlinear boundary value problem solved by spectral methods. Applicable Analysis 43 (1991), 229-244. | MR | Zbl

[6] W. Eckhaus, Asymptotic analysis of singular perturbations, vol. 9 of Studies in Mathematics and its Applications. Springer-Verlag, New-York, 1979. | MR | Zbl

[7] M. Garbey, A schwarz alternating procedure for singular perturbation problems. SIAM J. Scientific Computing 17, 5 (sept. 1996), 1175-1201. | MR | Zbl

[8] L. Landau and E. Lifshttz, Electrodynamics of continuons media, vol. 8 of Course of theoretical physics. Pergamon press, 1960. | Zbl

[9] B. Li, The magnetothermal phenomena in electromagnetic levitation processes. Int. J. Engng. Sci. 31, 2 (1993), 201-220.

[10] A. J. Mestel, Magnetic levitation of liquids metals. Journal of Fluid Mechanics 117 (1982), 27-43. | MR | Zbl

[11] A. H. Nayfeh, Perturbation methods. Wiley Interscience Publ. Co New York, 1973. | MR | Zbl

[12] Novelect. Les applications innovantes de l'induction dans l'industrie. Les guides de l'innovation, documentation EDF CFE, 1992.

[13] J. A. Shercliff, Magnetic shaping of molten metal columns. Proc. Royal. Soc. London 375, A (1981), 455-473.

[14] A. D. Sneyd and H. K. Moffatt, Fluid dynamical aspects of the levitation-melting process. Journal of Fluid Mechanics 117 (1982), 45-70. | MR | Zbl

[15] A. B. Vasel'Eva V. F. Butuzov and L. V. Kalachev, The Boundary Function Method for Singular Perturbations Problems, vol. 14 of Siam Studies in Applied Mathematics. Siam, 1995. | MR | Zbl