New efficient boundary conditions for incompressible Navier-Stokes equations : a well-posedness result
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 30 (1996) no. 7, pp. 815-840.
@article{M2AN_1996__30_7_815_0,
     author = {Bruneau, C.-H. and Fabrie, P.},
     title = {New efficient boundary conditions for incompressible Navier-Stokes equations : a well-posedness result},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     pages = {815--840},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {30},
     number = {7},
     year = {1996},
     zbl = {0865.76016},
     mrnumber = {1423081},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1996__30_7_815_0/}
}
Bruneau, C.-H.; Fabrie, P. New efficient boundary conditions for incompressible Navier-Stokes equations : a well-posedness result. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 30 (1996) no. 7, pp. 815-840. http://www.numdam.org/item/M2AN_1996__30_7_815_0/

[1] R. A. Adams, 1975, Sobolev spaces, Academic press, New-York. | MR 450957 | Zbl 0314.46030

[2] C. Bègue, C. Conca, F. Murat and O. Pironneau, 1987, A nouveau sur les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression, C. R. Acad. Sci. Parts, 304 série I, pp. 23-28. | MR 878818 | Zbl 0613.76029

[3] Ch.-H. Bruneau and P. Fabrie, 1994, Effective downstream boundary conditions for incompressible Navier-Stokes equations. Int. J. for Num. Methods in Fluids, 19, pp. 693-705. | Zbl 0816.76024

[4] C. Conca, 1984, Approximation de quelques problèmes de type Stokes par une méthode d'éléments finis mixtes. Numer. Math., 45, pp. 75-91. | MR 761881 | Zbl 0523.34009

[5] G. Duvaud, J. L. Lions, 1972, Les inéquations en mécanique et en physique, Dunod. | MR 464857 | Zbl 0298.73001

[6] V. Glrault et P. A. Raviart, 1986, Finite elements method for Navier Stokes equations, Springer Series in Computational Mathematics. | MR 851383

[7] P. M. Gresho, 1991, Incompressible fluid dynamics: Some fundamental formulation issues. Annu. Rev. Fluid Mech., 23, pp. 413-453. | MR 1090333 | Zbl 0717.76006

[8] L. Halpern, 1986, Artificial boundary conditions for the linear advection diffusion equation, Math. Comp., 46, pp. 425-438. | MR 829617 | Zbl 0649.35041

[9] L. Halpern and M. Schatzman, 1989, Artificial boundary conditions for incompressible viscous flows. SIAM J. Math. Anal., 20, pp. 308-353. | MR 982662 | Zbl 0668.76048

[10] J. L. Lions, 1979, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris. | Zbl 0189.40603

[11] R. Peyret and B. Rebourcet, 1982, Développement de jets en fluides stratifiés, Journal de Mécanique Théorique et Appliquée, 1, pp. 467-491. | Zbl 0543.76014

[12] O. Pironneau, 1986, Conditions aux limites sur la pression pour les équations de Stokes et de Navier-Stokes, C. R. Acad. Sci. Paris, 303, série I, pp. 403-40. | MR 862203 | Zbl 0613.76028

[13] R. Temam, 1993, Navier-Stokes Equations and Nonlinear Functional Analysis, Regional conference series in applied mathematics. | Zbl 0833.35110

[14] R. Temam, 1979, Navier-Stokes Equations and numencal Analysis, 2nd ed. North-Holland, Amsterdam. | MR 603444 | Zbl 0426.35003