Global superconvergence approximations of the mixed finite element method for the Stokes problem and the linear elasticity equation
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 30 (1996) no. 4, p. 401-411
@article{M2AN_1996__30_4_401_0,
     author = {Zhou, Aihui},
     title = {Global superconvergence approximations of the mixed finite element method for the Stokes problem and the linear elasticity equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {30},
     number = {4},
     year = {1996},
     pages = {401-411},
     zbl = {0858.73076},
     mrnumber = {1399497},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1996__30_4_401_0}
}
Zhou, Aihui. Global superconvergence approximations of the mixed finite element method for the Stokes problem and the linear elasticity equation. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 30 (1996) no. 4, pp. 401-411. http://www.numdam.org/item/M2AN_1996__30_4_401_0/

[1] I. Babuška, 1973, The finite element method with Lagrangian multiplies, Numer. Math., 20, pp. 179-192. | MR 359352 | Zbl 0258.65108

[2] J. Baranger and D. Sandri, 1992, A formulation of Stokes's problem and the linear elasticity equations suggested by the Oldroyd model for viscoelastic flow, M2AN, 26, pp. 331-345. | Numdam | MR 1153005 | Zbl 0738.76002

[3] F. Brezzi, 1974, On the existence, uniquence and approximation of saddle-point problems arising from Lagrange multipliers, RAIRO Anal. Numer., R-2, pp. 129-151. | Numdam | MR 365287 | Zbl 0338.90047

[4] F. Brezzi, 1986, A survey of mixed finite element methods, in : Finite Elements-Theory and Application (ed. Dwoyer et al.), Springer-Verlag, pp. 34-49. | MR 964479 | Zbl 0665.73058

[5] F. Brezzi and M. Fortin, 1991, Mixed and Hybrid Finite Element Methods, Springer-Verlag. | MR 1115205 | Zbl 0788.73002

[6] F. Brezzi and J. Pitkäranta, 1984, On the stabilization of finite element approximations of the Stokes equations, in : Efficient Solutions of Elliptic Systems, Notes on Numer. Fluid Mech., 10 (ed. Hackbush), Vieweg, Wiesbaden, pp. 11-19. | MR 804083 | Zbl 0552.76002

[7] P. G. Ciarlet, 1976, The Finite Element Methods for Elliptic Problems, North-Holland. | MR 520174 | Zbl 0999.65129

[8] P. G. Ciarlet and J. L. Lions, 1991, Handbook of Numerical Analysis, Vol. II, Finite Element Methods (Part I), North-Holland, Amsterdam. | MR 1115235 | Zbl 0712.65091

[9] M. Fortin and R. Pierre, 1989, On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows, Comp. Meth. Appl. Mech. Engrg., 73, pp. 341-350. | MR 1016647 | Zbl 0692.76002

[10] L. P. Franca, 1989, Analysis and finite element approximation of compressible and incompressible linear isotropic elasticity based upon a variational principle, Comp. Meth. Appl. Mech. Engrg., 76, pp. 259-273. | MR 1030385 | Zbl 0688.73044

[11] L. P. Franca and T. J. R. Hughes, 1988, Two classes of mixed finite element methods, Comp. Meth. Appl. Mech. Engrg., 69, pp. 89-129. | MR 953593 | Zbl 0629.73053

[12] L. P. Franca and R. Stenberg, 1991, Error analysis of some Galerkin-least-sequares methods for the elasticity equations, SIAM J. Num. Anal., 78, pp. 1680-1697. | MR 1135761 | Zbl 0759.73055

[13] V. Girault and P. A. Raviart, 1986, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, Springer-Verlag. | MR 851383 | Zbl 0585.65077

[14] R. Glowinski and O. Pironneau, 1979, On a mixed finite element approximation of the Stokes problem I, Convergence of the approximate solution, Numer. Math., 33, pp. 397-424. | MR 553350 | Zbl 0423.65059

[15] M. D. Gunzburger, 1986, Mathematical aspects of finite element methods for incompressible viscous flows, in : Finite Elements-Theory and Application (ed. Dwoyer et al.), Springer-Verlag, pp. 124-150. | MR 964483 | Zbl 0668.76029

[16] M. D. Gunzburger, 1989, Finite Element Methods for Incompressible Viscous Flows : A Guide to Theory, Pratice and Algorithms, Academic, Boston. | MR 1017032

[17] J. Li and A. Zhou, 1992, Notes on « On mixed mesh finite elements for solving the stationary Stokes problem », Numer. Anal. J. Chinese Univ., 14, 3, pp. 287-289 (Chinese). | MR 1260630

[18] Q. Lin, J. Li and A. Zhou, 1991, A rectangle test for the Stokes equations, in : Proc. of Sys. Sci. & Sys. Eng., Great Wall (Hongkong), Culture Publish Co., pp. 240-241.

[19] Q. Lin, N. Yan and A. Zhou, 1991, A rectangle test for interpolated finite elements, ibid., pp. 217-229.

[20] Q. Lin and Q. Zhu, 1994, The Proeprocessing and Postprocessing for the Finite Element Method, Shangai Scientific & Technical Publishers (Chinese).

[21] R. Stenberg, 1984, Analysis of mixed finite element method for the Stokes problem : a unified approach, Math. Comp., 42, pp. 9-23. | MR 725982 | Zbl 0535.76037

[22] R. Stenberg, 1991, Postprocess schemes for some mixed finite elements, RAIRO Model. Math. Anal. Numer., 25, pp. 152-168. | Numdam | MR 1086845 | Zbl 0717.65081

[23] R. Teman, 1979, Navier-Stokes Equations, North-Holland, Amsterdam. | Zbl 0426.35003

[24] R. Verfurth, 1984, Error estimates for a mixed finite element approximation of the stockes equations, RAIRO Numer. Anal., 18, pp. 175-182. | Numdam | MR 743884 | Zbl 0557.76037

[25] A. Zhou and J. Li, 1994, The full approximation accuracy for the stream function-vorticity-pressure method, Numer. Math., 68, pp. 427-435. | MR 1313153 | Zbl 0823.65110

[26] A. Zhou, J. Li and N. Yan, 1992, On the full approximation accuracy in finite element methods, in : Proc. Symposium on Applied Math. for Young Chinese Scholars (ed. F. Wu), Inst. of Applied Math., Academia Sinica, Beijing, July, pp. 544-553.