A posteriori error estimators for nonconforming finite element methods
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 30 (1996) no. 4, p. 385-400
@article{M2AN_1996__30_4_385_0,
     author = {Dari, E. and Duran, R. and Padra, C. and Vampa, V.},
     title = {A posteriori error estimators for nonconforming finite element methods},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {30},
     number = {4},
     year = {1996},
     pages = {385-400},
     zbl = {0853.65110},
     mrnumber = {1399496},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1996__30_4_385_0}
}
Dari, E.; Duran, R.; Padra, C.; Vampa, V. A posteriori error estimators for nonconforming finite element methods. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 30 (1996) no. 4, pp. 385-400. http://www.numdam.org/item/M2AN_1996__30_4_385_0/

[1] D. N. Arnold, F. Brezzi, Mixed and nonconforming finite element method simplementation, postprocessing and error estimates, R.A.I.R.O., Modél. Math. Anal Numer. 19, 1985, pp. 7-32. | Numdam | MR 813687 | Zbl 0567.65078

[2] D. N. Arnold, R. S. Falk, A uniformly accurate finite element method for the Reissner-Mindlin plate. SIAM J. Numer. Anal. 26, 1989, pp. 1276-1290. | MR 1025088 | Zbl 0696.73040

[3] I. Babuška, R. Durán, R. Rodríguez, Analysis of the efficiency of an a posteriori error estimator for liner triangular finite elements, Siam J. Numer. Anal. 29, 1992, pp. 947-964. | MR 1173179 | Zbl 0759.65069

[4] I. Babuška, A. Miller, A feedback finite element method with a posteriori error estimation. Part I : The finite element method and some basic properties of the a posteriori error estimator, Comp. Meth. Appl. Mech. Eng. 61, 1987, pp. 1-40. | MR 880421 | Zbl 0593.65064

[5] I. Babuška, W. C. Rheinboldt, A posteriori error estimators in the finite element method, Inter. J. Numer. Meth. Eng. 12, 1978, pp. 1587-1615. | Zbl 0396.65068

[6] R. E. Bank, A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44, 1985,, pp. 283-301. | MR 777265 | Zbl 0569.65079

[7] P. G. Ciarlet, The finite element method for elliptic problems, North Holland, 1978. | MR 520174 | Zbl 0383.65058

[8] D. F. Griffiths, A. R. Mitchell, Nonconforming elements, The mathematical basis of finite element methods, D. F. Griffiths, ed., Clarendon Press, Oxford, 1984, pp. 41-69. | MR 807009

[9] L. D. Marini, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method, SIAM J. Numer. Anal. 22, 1985, pp. 493-496. | MR 787572 | Zbl 0573.65082

[10] M. C. Rivara, Mesh refinement processes based on the generalized bisection of simplices, SIAM J. Numer. Anal. 21, 1984, pp.604-613 | MR 744176 | Zbl 0574.65133

[11] L. R. Scott, S. Shang, Finite element interpolation of non-smooth functions satisfying boundary conditions, Math. Comp. 54, 1990, pp. 483-493. | MR 1011446 | Zbl 0696.65007

[12] R. Verfürth, A posteriori error estimators for the Stokes equations, Numer.Math. 55, 1989, pp. 309-325. | MR 993474 | Zbl 0674.65092