@article{M2AN_1992__26_2_235_0, author = {Bolley, Catherine}, title = {Mod\'elisation du champ de retard \`a la condensation d'un supraconducteur par un probl\`eme de bifurcation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, pages = {235--287}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {26}, number = {2}, year = {1992}, zbl = {0741.35085}, mrnumber = {1153002}, language = {fr}, url = {http://www.numdam.org/item/M2AN_1992__26_2_235_0/} }
TY - JOUR AU - Bolley, Catherine TI - Modélisation du champ de retard à la condensation d'un supraconducteur par un problème de bifurcation JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique PY - 1992 DA - 1992/// SP - 235 EP - 287 VL - 26 IS - 2 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1992__26_2_235_0/ UR - https://zbmath.org/?q=an%3A0741.35085 UR - https://www.ams.org/mathscinet-getitem?mr=1153002 LA - fr ID - M2AN_1992__26_2_235_0 ER -
Bolley, C. Modélisation du champ de retard à la condensation d'un supraconducteur par un problème de bifurcation. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 26 (1992) no. 2, pp. 235-287. http://www.numdam.org/item/M2AN_1992__26_2_235_0/
[1] Relation entre les grandeurs supraconductrices caractéristiques de l'aluminium massif et les champs de transition de films divisés, en fonction de leur épaisseur. Thèse soutenue à Rennes 1, 1987.
,[2] Bifurcations dans les équations de Ginzburg-Landau des matériaux supraconducteurs soumis à un champ magnétique extérieur. Publications de l'E.N.S.M. 1988.
,[3] Familles de branches de bifurcations dans les équations de Ginzburg-Landau, RAIRO M2AN Vol. 25, n° 3, 1991. | Numdam | MR 1103091 | Zbl 0726.34031
,[4] Bifurcation from Simple Eigenvalues, J. Funct. Anal. 8, 1971. | MR 288640 | Zbl 0219.46015
and ,[5] Eigenvalues variations I. Neumann problem for Sturm-Liouville operators, à paraître. | Zbl 0784.34021
and ,[6] Étude théorique et expérimentale des propriétés magnétiques des couches minces supraconductrices de type I et de kappa faibles. Thèse soutenue à Mons, 1978.
,[7] Soviet Physics JETP 7, 78, 1958. | MR 101069
,[8]
, Communication personnelle.[9] Semi-classical Analysis for the Schrödinger Operator and Applications. Lecture Notes in Math. n° 1336, 1980. | Zbl 0647.35002
,[10] Perturbation Theory for Linear Operators, Springer-Verlag, n° 132, 1976. | MR 407617 | Zbl 0342.47009
,[11] Topological Methods in the Theory of Nonlinear Intégral Eq., Pergamon Press, 1964. | MR 159197
,[12] Introduction to Spectral Theory : Selfadjoint Ordinary Diff. Equations, American Math. Soc., 1975. | MR 369797 | Zbl 0302.47036
and ,[13] Étude de la métastabilité de la transition supraconductrice de films divisés d'indium sous champ magnétique parallèle et perpendiculaire. Thèse soutenue à Rennes 1, 1987.
[14] Some Global Results for Nonlinear Eigenvalue Problems. J. Funct. Anal., n° 7, pp. 487-513, 1971. | MR 301587 | Zbl 0212.16504
,[15] Phys. Lett. 7, 306, 1963.
et ,[16] Méthodes mathématiques pour les sciences physiques, Hermann, Paris, 1965. | MR 143360 | Zbl 0904.35001
,[17] Global Theory of a Second Order Linear Differential Equation with a Polynomial Coefficient, North Holland, 1975. | MR 486867 | Zbl 0322.34006
,[18] Schock Waves and Reaction Diffusion Equations, n° 258. Springer-Verlag, 1980. | MR 1301779 | Zbl 0807.35002
,