A triangular mixed finite element method for the stationary semiconductor device equations
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 25 (1991) no. 4, p. 441-463
@article{M2AN_1991__25_4_441_0,
     author = {Miller, J. J. H. and Wang, S.},
     title = {A triangular mixed finite element method for the stationary semiconductor device equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {25},
     number = {4},
     year = {1991},
     pages = {441-463},
     zbl = {0732.65114},
     mrnumber = {1108585},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1991__25_4_441_0}
}
Miller, J. J. H.; Wang, S. A triangular mixed finite element method for the stationary semiconductor device equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 25 (1991) no. 4, pp. 441-463. http://www.numdam.org/item/M2AN_1991__25_4_441_0/

[1] R. A. Adams, Sobolev Spaces, Academie Press, New York (1975). | MR 450957 | Zbl 0314.46030

[2] I. Babuška, A. K. Aziz, Survey Lectures on the Mathematical Foundations of the Finite Element Method from The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Academic Press, New York (1972). | MR 421106 | Zbl 0268.65052

[3] I. Babuška, J. E. Osborn, Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods, SIAM J. Numer. Anal., 20, No. 3 (1983) 510-536. | MR 701094 | Zbl 0528.65046

[4] R. E. Bank, D. J. Rose, Some Error Estimates fot the Box Method, SIAM J. Numer. Anal., 24, No. 4 (1987) 777-787. | MR 899703 | Zbl 0634.65105

[5] F. Brezzi, P. Marini, P. Pietra, Méthodes d'éléments finis et schema de Scharfetter-Gummel, C. R. Acad. Sci. Paris, 305, Seriel (1987) 599-604. | MR 917577 | Zbl 0623.65131

[6] F. Brezzi, P. Marini, P. Pietra, Two-Dimensional Exponential Fitting and Applications to Semiconductor Device Equations, SIAM J. Numer. Anal. 26 (1989) 1342-1355. | MR 1025092 | Zbl 0686.65088

[7] F. Brezzi, L. D. Marini, P. Pietra Numerical Solution of Semiconductor Devices, Comp. Meth. Appl. Mech. Engin, 75 (1989) 493-514. | MR 1035759 | Zbl 0698.76125

[8] E. Buturla, P. Cottrell, B. M. Grossman, K. A. Salsburg, Finite-Element Analysis of Semiconductor Devices The FIELDAY Program, IBM J. Res. Develop., 25, No. 4 (1981) 218-231.

[9] P. G. Ciarlet, P. A. Raviart, General Lagrange and Hermite Interpolation in Rn with Applications to Finite Element Methods, Arch. Rat. Mech. Anal., 46 (1972) 177-199. | MR 336957 | Zbl 0243.41004

[10] B. Delaunay, Sur la sphere vide, Izv. Akad. Nauk. SSSR, Math and Nat. Sci. Div., No. 6 (1934) 793-800 | Zbl 0010.41101

[11] G. L. Dirichlet, Uber die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen, J. Reine Angew. Math., 40, No. 3 (1850) 209-227. | Zbl 040.1103cj

[12] V. Girault, P. A. Raviart, Finite Element Approximation of the Navier-Stokes Equations, Lect. Notes in Math., No. 749, Springer-Verlag (1979). | MR 548867 | Zbl 0413.65081

[13] H. K. Gummel, A Self-Consistent Iterative Scheme for One-Dimensional Steady State Transistor Calculation, IEEE Trans. Elec. Dev., ED-11 (1964) 455-465.

[14] B. Heinrich, Finite difference methods on irregular networks, Birkhauser Verlag, Basel-Boston-Stuttgart (1987). | MR 875416 | Zbl 0623.65096

[15] T Ikeda, Maximum Principle in Finite Element Models for Convection-Diffusion Phenomena, North-Holland (1983) | Zbl 0508.65049

[16] R. H. Li, Generalized Difference Methods for a Nonlinear Dirichlet Problem, SIAM J. Numer. Anal. Vol. 24, No. 1 (1987) 77-88 | MR 874736 | Zbl 0626.65091

[17] R. H. Macneal, An Asymmetrical Finite Difference Network, Quart. Appl. Math., 11 (1953) 295-310. | MR 57631 | Zbl 0053.26304

[18] P. A. Markowich, M. Zlámal, Inverse-Average-Type Finite Element Discretisations of Self adjoint Second-Order Elliptic Problems, Math. Comput., 51, No. 184 (1988) 431-449. | MR 930223 | Zbl 0699.65074

[19] B. J. Mccartin, Discretization of the Semiconductor Device Equations from New Problems and New Solutions for Device and Process Modelling, ed. J. J. H. Miller, Boole Press, Dublin (1985).

[20] J. J. H. Miller, S. Wang, C. H. Wu, A Mixed Finite Element Method for the Stationary Semiconductor Continuity Equations, Engin. Comput., 5, No. 4 (1988) 285-288. | MR 1171713

[21] M. S. Mock, Analysis of a Discretization Algorithm for Stationary Continuity Equations in Semiconductor Device Models, COMPEL, Vol. 2, No. 4 (1983) 117-139. | Zbl 0619.65116

[22] J. T. Oden, J. K. Lee, Theory of Mixed and Hybrid Finite-Element Approximations in Linear Elasticity from IUTAM/IUM Symp. Applications of Methods of Functional Analysis to Problems of Mechanics, Lect. Notes in Math. No. 503, Springer-Verlag (1976). | MR 670098 | Zbl 0361.73031

[23] J. T. Oden, J. N. Reddy, An Introduction to the Mathematical Theory of Finite Elements, John Wiley & Sons, New York (1976). | MR 461950 | Zbl 0336.35001

[24] W. V. Van Roosbroeck, Theory of Flow of Electrons and Holes in Germanium and Other Semiconductors, Bell Syst. Tech. J., 29 (1950) 560-607

[25] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey (1962). | MR 158502 | Zbl 0133.08602