The Runge-Kutta local projection P 1 -discontinuous-Galerkin finite element method for scalar conservation laws
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 25 (1991) no. 3, p. 337-361
@article{M2AN_1991__25_3_337_0,
     author = {Cockburn, Bernardo and Shu, Chi-Wang},
     title = {The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {25},
     number = {3},
     year = {1991},
     pages = {337-361},
     zbl = {0732.65094},
     mrnumber = {1103092},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1991__25_3_337_0}
}
Cockburn, Bernardo; Shu, Chi-Wang. The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 25 (1991) no. 3, pp. 337-361. http://www.numdam.org/item/M2AN_1991__25_3_337_0/

[1] Y. Brenier and S. Osher, Approximate Riemman Solvers, and Numerical Flux Functions ICASE-NASA Langley Center report n° 84-63, Hampton, VA, 1984. | Zbl 0597.65071

[2] G. Chavent and B. Cockburn, Consistance et Stabilité des Schémas LRG pour les Lois de Conservation Scalaires, INRIA report # 370 (1987).

[3] G. Chavent and B. Cockburn, The Local Projection Discontinuons Galerkin Finite Element Method for Scalar Conservation Laws, M2AN, 23 (1989), pp. 565-592. | Numdam | MR 1025072 | Zbl 0715.65079

[4] G. Chavent and G. Salzano, A Finite Element Method for the 1D Water Flooding Problem with Gravity, J. Comput. Phys., 45 (1982) pp. 307-344. | MR 666166 | Zbl 0489.76106

[5] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland, 1975. | MR 520174 | Zbl 0383.65058

[6] T. Geveci, The Significance of the Stability of Difference Schemes in Different lp-spaces, SIAM Review, 24 (1982),pp. 413-426. | MR 678560 | Zbl 0495.65043

[7] B. A. Fryxel, P. R. Woodward, P. Collela and K. H. Winkler, An Implicit-Explicit Hybrid Method for Lagrangian Hydrodynamics, J. Comput Phys., 63 (1986), pp. 283-310. | MR 835820 | Zbl 0596.76078

[8] P. D. Lax and B. Wendroff, Systems of Conservation Laws, Comm. Pure and Appl. Math., 13 (1960), pp. 217-237. | MR 120774 | Zbl 0152.44802

[9]S. Osher, Riemman Solvers, the Entropy Condition, and Difference Approximations, SIAM J. Numer. Anal., 21 (1984), pp. 217-235. | MR 736327 | Zbl 0592.65069

[10] B. Van Leer, Towards the Ultimate Conservative Scheme, VI. A NewApproach to Numerical Convection J. Comput.Phys., 23 (1977), pp. 276-299. | Zbl 0339.76056

[11] C. W. Shu, TVB uniformly high-order schemes for conservation laws, Math.Comp., 49 (1987), pp. 105-121. | MR 890256 | Zbl 0628.65075

[12] C. W. Shu and S. Osher, Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes, J. Comput. Phys., 77 (1988), pp. 439-471. | MR 954915 | Zbl 0653.65072