On finding the largest root of a polynomial
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 24 (1990) no. 6, p. 693-696
@article{M2AN_1990__24_6_693_0,
     author = {Davenport, J. H. and Mignotte, Maurice},
     title = {On finding the largest root of a polynomial},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {24},
     number = {6},
     year = {1990},
     pages = {693-696},
     zbl = {0715.65033},
     mrnumber = {1080714},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1990__24_6_693_0}
}
Davenport, J. H.; Mignotte, M. On finding the largest root of a polynomial. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 24 (1990) no. 6, pp. 693-696. http://www.numdam.org/item/M2AN_1990__24_6_693_0/

[1] A. L. Cauchy, Exercices de Mathématiques. Quatrième année, De Bure Frères,Paris, 1829. Oeuvres Ser. II, Vol. IX, Gauthier-Villars, Paris, 1891.

[2] L. Cerlienco, M. Mignotte and F. Piras, Computing the measure of a polynomial. J. Symbolic Comp., vol. 4, 1987, pp. 21-33. | MR 908409 | Zbl 0629.12002

[3] J. Dieudonné, Calcul Infinitésimal Hermann, Paris, 1968. | MR 226971 | Zbl 0155.10001

[4] P. Henrici, Applied and Computational Complex Analysis. Vol. 1, John Wiley & Sons, New York, 1974. | MR 372162 | Zbl 0313.30001

[5] D. Knuth, The Art of Programming. Vol. 2, Addison-Wesley, New York, 1969.

[6] P. J. Weinberger, L. P. Rothschild, Factoring Polynomials over algebraic number fields. A.C.M. Trans. Math. Software 2, 1976, pp. 335-350. | MR 450225 | Zbl 0352.12003