A quantum-transport model for semiconductors : the Wigner-Poisson problem on a bounded Brillouin zone
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 24 (1990) no. 6, p. 697-709
@article{M2AN_1990__24_6_697_0,
     author = {Degond, Pierre and Markowich, Peter A.},
     title = {A quantum-transport model for semiconductors : the Wigner-Poisson problem on a bounded Brillouin zone},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {24},
     number = {6},
     year = {1990},
     pages = {697-709},
     zbl = {0742.35046},
     mrnumber = {1080715},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1990__24_6_697_0}
}
Degond, Pierre; Markowich, Peter A. A quantum-transport model for semiconductors : the Wigner-Poisson problem on a bounded Brillouin zone. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 24 (1990) no. 6, pp. 697-709. http://www.numdam.org/item/M2AN_1990__24_6_697_0/

[1] M. Cessenat, Théorèmes de Trace pour des Espaces des Fonctions de la Neutronique. C.R. Acad. Sc. Paris, tome 300, série l, n°3, 1985. | MR 777741 | Zbl 0648.46028

[2] R. Dautray and J. L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques. Tome 3, Masson, Paris, 1985. | MR 902802

[3] F. Golse, P. L. Lions, B. Perthame and R. Sentis, Regularity of the Moments of the Solution of a Transport Equation. J. Funct. Anal. 88, pp. 110-125, 1988. | MR 923047 | Zbl 0652.47031

[4] J. C. Guillot, J. Ralston and E. Trubowitz, Semi-Classical Asymptotics in Solid State Physics. Communications in Math. Phys., vol. 116, n°3, pp. 401-415, 1988. | MR 937768 | Zbl 0672.35014

[5] C. Kittel, Introduction to Solid States Physics, J. Wiley and Sons, New York, 1968. | Zbl 0052.45506

[6] P. A. Markowich and C. Ringhofer, An Analysis of the Quantum Liouville Equation. To appear in ZAMM, 1988. | MR 990011 | Zbl 0682.46047

[7] P. A. Markowich, On the Equivalence of the Schrödinger and the Quantum Liouville Equations. To appear in Math. Meth. In the Appl. Sci., 1988. | MR 1001097 | Zbl 0696.47042

[8] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer Verlag, New York-Berlin-Heidelberg-Tokyo, 1983. | MR 710486 | Zbl 0516.47023

[9] V. I. Tatarskii, The Wigner Representation of Quantum Mechanics. Sov. Phys. Usp., vol. 26, n°4, pp. 311-327, 1983. | MR 730012

[10] A. Arnold,P. Degond, P. A. Markowich and H. Steinrück, The Wigner-Poisson Equation in a Crystal, to appear in : Applied Mathematics Letters, 1989. | MR 1003856 | Zbl 0822.58070

[11] P. Degond, P. A. Markowich and H. Steinrück, A Mathematical Derivation of the Wigner-Poisson Problem on a bounded Brillouin Zone from the Schrödinger Equation, manuscript.