Continuity of attractors
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 23 (1989) no. 3, p. 519-533
@article{M2AN_1989__23_3_519_0,
     author = {Raugel, Genevi\`eve},
     title = {Continuity of attractors},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {23},
     number = {3},
     year = {1989},
     pages = {519-533},
     zbl = {0687.58021},
     mrnumber = {1014489},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1989__23_3_519_0}
}
Raugel, Geneviève. Continuity of attractors. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 23 (1989) no. 3, pp. 519-533. http://www.numdam.org/item/M2AN_1989__23_3_519_0/

[1] A. V. Babin, M. I. Vishik (1), Regular attractors of semigroupsand evolution quations, J. Math. Pures et Appl. 62, pp. 441-491, 1983. | MR 735932 | Zbl 0565.47045

[2] A. V. Babin, M. I. Vishik (2), Unstable invariant sets of semigroups of nonlinear operators and their perturbations, Uspekhi Mat. Nauk 41, pp. 3-34, 1986, Russian Math. Surveys 41, pp. 1-41, 1986. | MR 863873 | Zbl 0624.47065

[3] P. Brunovsky, S.-N. Chow, Generic properties of stationary solutions of reaction-diffusion equations, J. Diff. Equat. 53, pp. 1-23, 1984. | MR 747403 | Zbl 0544.34019

[4] G. Cooperman, α-Condensing maps and dissipative systems, Ph. D. Thesis, Brown Umversity, Providence, R.I., June 1978.

[5] J. M. Ghidaglia, R. Temam, Attractors for damped nonlinear hyperbolic equations, J. Math. Pures et Appl., 66, pp. 273-319, 1987. | MR 913856 | Zbl 0572.35071

[6] J. K. Hale (1), Asymptotic behavior and dynamics in infinite dimensions, in Nonlinear Differential Equations, J. K. Hale and P. Martinez-Amores, Eds., Pittman 132, 1985. | Zbl 0653.35006

[7] J. K. Hale (2), Asymptotic Behavior of Dissipative Systems, Surveys and Monographs, Vol. 25, A.M.S., Providence, R.I., 1988. | MR 941371 | Zbl 0642.58013

[8] J. K. Hale, X. B. Lin, G. Raugel, Upper-semicontinuity of attractors for approximations of semigroups and partial differential equations, Math. of Comp., 50, pp. 89-123, 1988. | MR 917820 | Zbl 0666.35013

[9] J. K. Hale, L. Magalhaes, W. Oliva, An Introduction to Infinite Dimensional Dynamical Systems, Applied Math. Sciences, Vol. 47, Springer Verlag, 1984. | MR 725501 | Zbl 0533.58001

[10] J. K. Hale, G. Raugel (1), Upper-semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Diff. Equat., 73, pp. 197-214, 1988. | MR 943939 | Zbl 0666.35012

[11] J. K. Hale, G. Raugel (2), Lower-semicontinuity of attractors of gradient systems and applications, Ann. Mat. Pura e App., to appear. | MR 1043076 | Zbl 0712.47053

[12] J. K. Hale, G. Raugel (3), Lower-semicontinuity of the singularly perturbed hyperbolic equation, DDE., to appear. | Zbl 0752.35034

[13] J. K. Hale, G. Raugel (4), A reaction-diffusion equation on a thin domain, preprint.

[14] J. K. Hale, G. Raugel (5), Morse-Smale property for a singularly perturbed hyperbolic equation, in preparation.

[15] J. K. Hale, C. Rocha, Interaction of diffusion and boundary conditions, Nonlinear Analysis, T.M.A., 11, pp. 633-649, 1987. | MR 886654 | Zbl 0661.35047

[16] A. Haraux, Two remarks on dissipative hyperbolic problems, Séminaire du Collège de France, J. L. Lions Ed., Pittman, Boston, 1985.

[17] D. Henry (1), Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math, Vol. 840, Springer Verlag, 1981. | MR 610244 | Zbl 0456.35001

[18] D. Henry (2), Some infinite-dimensional Morse-Smale Systems defined by parabolic partial differential equations, J. Diff. Equat. 59, pp. 165-205, 1985. | MR 804887 | Zbl 0572.58012

[19] D. Henry (3), Generic properties of equilibrium solutions by perturbation of the boundary, Preprint of the « Centre de Recerca Matematica Institut d'Estudis Catalans», 37, 1986. | MR 921906 | Zbl 0656.35069

[20] X. Morà, J. Sola-Morales, The singular limit dynamics of semilinear damped wave equations, J. Diff. Equat., to appear. | MR 992148 | Zbl 0699.35177

[21] J. Palis, W. De Melo, Geometric Theory of Dynamical Systems, Springer Verlag, 1982. | MR 669541 | Zbl 0491.58001

[22] C. Rocha, Generic properties of equilibria of reaction-diffusion equations with variable diffusion, Proc. Roy. Soc. Edinburgh, 101A, pp. 45-56, 1985. | MR 824206 | Zbl 0601.35053

[23] J. Smoller, A. Wasserman Generic bifurcation of steady-state solutions, J.Diff. Equat. 52, pp. 432-438, 1984. | MR 744306 | Zbl 0488.58015