Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 23 (1989) no. 1, p. 103-128
@article{M2AN_1989__23_1_103_0,
     author = {Gastaldi, Lucia and Nochetto, Ricardo H.},
     title = {Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {23},
     number = {1},
     year = {1989},
     pages = {103-128},
     zbl = {0673.65060},
     mrnumber = {1015921},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1989__23_1_103_0}
}
Gastaldi, Lucia; Nochetto, Ricardo H. Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 23 (1989) no. 1, pp. 103-128. http://www.numdam.org/item/M2AN_1989__23_1_103_0/

[1] S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Comm. Pure Appl. Math., 12 (1959), pp. 623-727. | MR 125307 | Zbl 0093.10401

[2] D. N. Arnold, F. Brezzi, Mixed and nonconforming finite element methods : implementation, post-processing and error estimates, R.A.I.R.O. Model. Math Anal. Numér, 19, 1 (1985), pp. 7-35. | Numdam | MR 813687 | Zbl 0567.65078

[3] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, R.A.I.R.O. Anal. Numér., 2 (1974), pp. 129-151. | Numdam | MR 365287 | Zbl 0338.90047

[4] F. Brezzi, J. Jr. Douglas, R. Durán, M. Fortin, Mixed finite elements for second order elliptic problems in three variables, Numer. Math., 51 (1987) pp. 237-250. | MR 890035 | Zbl 0631.65107

[5] F. Brezzi, J. Jr. Douglas, M. Fortin, L. D. Marini, Efficient rectangular mixed finite elements in two and three space variables, R.A.I.R.O. Model. Math. Anal. Numér., 21, 4 (1987), pp. 581-604. | Numdam | MR 921828 | Zbl 0689.65065

[6] F. Brezzi, J. Jr. Douglas, L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47 (1985), pp. 217-235. | MR 799685 | Zbl 0599.65072

[7] F. Brezzi, J. Jr. Douglas, L. D. Marini, Variable degree mixed methods for second order elliptic problems, Mat. Apl. Comput., 4 (1985), pp. 19-34. | MR 808322 | Zbl 0592.65073

[8] P. G. Ciarlet, The finite element method for elliptic problems, North Holland, Amsterdam, 1978. | MR 520174 | Zbl 0383.65058

[9] J. Jr. Douglas, J. E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp., 44, 169 (1985), pp. 39-52. | MR 771029 | Zbl 0624.65109

[10] R. G. Durán, Error analysis in Lp, 1 ≤ p ≤ ∞ for mixed finite element methods for linear and quasi-linear elliptic problems, R.A.I.R.O, Model. Math Anal. Numér., 22, 3 (1988), pp. 371-387. | Numdam | Zbl 0698.65060

[11] L. Gastaldi, R. H. Nochetto, Optimal L∞-error estimates for nonconforming and mixed finite element methods of the lowest order, Numer. Math., 50, 3 (1987), pp. 587-611. | MR 880337 | Zbl 0597.65080

[12] L. Gastaldi, R. H. Nochetto, On L∞-accuracy of mixed finite element methods for second order elliptic problems, Mat. Api. Comput., 7 (1988), pp. 13-39. | MR 965675 | Zbl 0677.65104

[13] C. Johnson, V. Thomee, Error estimates for some mixed finite element methods for parabolic type problems, R.A.I.R.O. Anal. Numér., 15, 1 (1981), pp. 41-78. | Numdam | MR 610597 | Zbl 0476.65074

[14] F. Natterer, Über die punktweise konvergenz finiter Elemente, Numer. Math,, 25, 1 (1975), pp. 67-78. | MR 474884 | Zbl 0331.65073

[15] J. Nedelec, Mixed finite elements in R3, Numer. Math., 35 (1980), pp. 315-341. | MR 592160 | Zbl 0419.65069

[16] J. A. Nitsche, L∞-convergence of finite element approximations Mathematical aspects of the Finite Element Methods, Lectures Notes in Math. N. 606, Springer-Verlag, New York, 1977, pp. 261-274. | MR 488848 | Zbl 0362.65088

[17] J. A. Nitsche, Schauder estimates for finite element approximations on second order elliptic boundary value problems. Proceedings of the Special Year in Numerical Analysis, Lectures Notes N. 20, Univ. of Maryland, Babuska, Liu, Osborn eds., 1981, pp. 290-343.

[18] R. Rannacher, Zur L∞-Konvergenz linearer finiter elemente beim Dirichlet- Problem, Math. Z., 149 (1976), pp. 69-77. | MR 488859 | Zbl 0321.65055

[19] R. Rannacher, R. Scott, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp., 38, 158 (1982), pp. 437-445. | MR 645661 | Zbl 0483.65007

[20] P. A. Raviart, J. M. Thomas, A mixed finite element method for second order elliptic problems, Mathematical Aspects of the Finite Element Methods, Lecture Notes in Math. N. 606, Springer-Verlag, New York, 1977, pp. 292-315. | MR 483555 | Zbl 0362.65089

[21] R. Scholz, L∞-convergence of saddle-point approximations for second order problems, R.A.I.R.O. Anal. Numér., 11, 2 (1977), pp. 209-216. | Numdam | MR 448942 | Zbl 0356.35026

[22] R. Scholz, Optimal L∞-estimates for a mixed finite element method for elliptic and parabolic problems, Calcolo, 20 (1983), pp. 355-377. | MR 761790 | Zbl 0571.65092

[23] R. Scholz, A remark on the rate of convergence for a mixed finite element method for second order problems, Numer. Funct. Anal. Optim, 4 (3) (1981-1982), pp. 269-277. | MR 665363 | Zbl 0481.65066