On the approximation of the spectrum of the Stokes operator
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 23 (1989) no. 1, p. 129-136
@article{M2AN_1989__23_1_129_0,
     author = {Geveci, Tunc and Reddy, B. Daya and Pearce, Howard T.},
     title = {On the approximation of the spectrum of the Stokes operator},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {23},
     number = {1},
     year = {1989},
     pages = {129-136},
     zbl = {0683.65095},
     mrnumber = {1015922},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1989__23_1_129_0}
}
Geveci, Tunc; Reddy, B. Daya; Pearce, Howard T. On the approximation of the spectrum of the Stokes operator. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 23 (1989) no. 1, pp. 129-136. http://www.numdam.org/item/M2AN_1989__23_1_129_0/

[1] K. J. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982, Englewood Cliffs, N.J.

[2] M. Bercovier, Perturbation of mixed variational problems : Application to mixed finite element methods, R.A.I.R.O. Anal. Num. 12 (1978), 211-236. | Numdam | MR 509973 | Zbl 0428.65059

[3] C. Canuto, Eigenvalue approximation by mixed methods, R.A.I.R.O. Anal. Num. 12 (1978), 25-50. | Numdam | MR 488712 | Zbl 0434.65032

[4] C. Canuto, A hybrid finite element to compute the free vibration frequencies of a clamped plate, R.A.I.R.O. Anal. Num. 15 (1981), 101-118. | Numdam | MR 618818 | Zbl 0462.73049

[5] V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier-Stokes Equations, Lecture Notes in Mathematics 749, Springer-Verlag, 1979, New York, Heidelberg, Berlin. | MR 548867 | Zbl 0413.65081

[6] D. F. Griffiths, Finite elements for incompressible flow, Math. Meth. in the Appl. Sci. 1 (1979), 16-31. | MR 548403 | Zbl 0425.65061

[7] D. F. Griffiths, An approximately divergence-free 9-node velocity element (with variations) for incompressible flows, Int. J. Num. Meth. Fluids 1 (1981), 323-346. | MR 633811 | Zbl 0469.76026

[8] B. Mercier, J. Osborn, J. Rappaz and P.-A. Raviart, Eigenvalue approximation of mixed and hybrid methods, Math. Compt. 36 (1981), 427-453. | MR 606505 | Zbl 0472.65080

[9] J. T. Oden, N. Kikuchi and Y. J. Song, Penalty-finite element methods for the analysis of Stokesian flows, Comp. Meth. Appl. Mech. Eng. 31 (1982), 297-239. | MR 677872 | Zbl 0478.76041

[10] J. S. Peterson, An application of mixed finite element methods to the stability of the incompressible Navier-Stokes equations, SIAM J. Sci. Stat. Comput. 4 (1983), 626-634. | MR 725657 | Zbl 0526.76039

[11] G. Strang and G. F. Fix, An Analysis of the Finite Element Method, Prentice-Hall, 1973, Englewood Cliffs, N.J. | MR 443377 | Zbl 0356.65096

[12] R. Temam, Navier-Stokes Equations, North-Holland, 1979, Amsterdam, New York, Oxford. | Zbl 0426.35003

[13] R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 1983, Philadelphia. | MR 764933 | Zbl 0833.35110

[14] F. Thomasset, Implementation of the Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, 1981, New York, Heidelberg, Berlin. | MR 720192 | Zbl 0475.76036