On the application of mixed finite element methods to the wave equations
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 22 (1988) no. 2, p. 243-250
@article{M2AN_1988__22_2_243_0,
     author = {Geveci, Tunc},
     title = {On the application of mixed finite element methods to the wave equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {22},
     number = {2},
     year = {1988},
     pages = {243-250},
     zbl = {0646.65083},
     mrnumber = {945124},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1988__22_2_243_0}
}
Geveci, Tunc. On the application of mixed finite element methods to the wave equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 22 (1988) no. 2, pp. 243-250. http://www.numdam.org/item/M2AN_1988__22_2_243_0/

[1] R. Alex Ander, Diagonally implicity Runge-Kutta methods for stiff O.D.E.'s, SIAM J. Numer. Anal. 14 (1977), 1006-1021. | MR 458890 | Zbl 0374.65038

[2] D. N. Arnold and F. Brezzi, Mixed and non conforming finite elementmethods: Implementation, postprocessing and error estimates, R.A.R.O. Math. Model, and Num. Anal. (M2AN) 1 (1985), 7-32. | Numdam | MR 813687 | Zbl 0567.65078

[3] D. N. Arnold, J. Douglas, Jr., and C. P. Gupta, A family of higher ordermixed finite element methods for plane elasticity, Numer. Math. 45 (1984), 1-22. | MR 761879 | Zbl 0558.73066

[4] G. A. Baker and J. H. Bramble, Semidiscrete and single step fully discreteapproximations for second order hyperbolic equations, R.A.I.R.O. Anal. Num. 13 (1979), 75-100. | Numdam | MR 533876 | Zbl 0405.65057

[5] B. Brenner, M. Crouzeix and V. Thomée, Single step methods for inhomogeneous linear differential equations in Banach spaces, R.A.I.R.O. Anal. Num. 16 (1982), 5-26. | Numdam | MR 648742 | Zbl 0477.65040

[6] F. Brezzi, J. Douglas Jr. and L. D Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), 217-235. | MR 799685 | Zbl 0599.65072

[7] K. Burrage, Efficiently implementable algebraically stable Runge-Kutta methods, SIAM J. Numer. Anal. 19 (1982), 245-258. | MR 650049 | Zbl 0483.65040

[8] M. Crouzeix, Sur l'approximation des équations différentielles opérationnelles linéaires par des méthodes de Runge-Kutta, thèse, Paris (1975).

[9]M. Crouzeix and P.-A. Raviart, Approximation des problèmes d'évolution, preprint, Université de Rennes (1980).

[10] V. Dougalis and S.M. Serbin, One some unconditionally stable, higher order methods for numerical solution of the structural dynamics equations, Int. J. Num. Meth. Eng. 18 (1982), 1613-1621. | MR 680513 | Zbl 0488.73087

[11] E. Gekeler, Discretization Methods for Stable Initial Value Problems, Springer Lecture Notes in Mathematics 1044 (1984), Springer-Verlag, Berlin, Heidelberg, New York. | MR 731695 | Zbl 0518.65050

[12] C. Johnson and V. Thomée, Error estimates for some mixed finite element methodes for parabolic type problems, R.A.I.R.O. Anal. Num. 15 (1981), 41-78. | Numdam | MR 610597 | Zbl 0476.65074

[13] P.-A., Raviart and J.M. Thomas , A mixed finite element method for 2nd order problems, in Mathematical Aspects of the Element Method, Springer Lecture Notes in Mathematics 606 (1977), Springer-Verlag, Berlin-Heidelberg-New York. | MR 483555