TUNC GEVECI

On the application of mixed finite element methods to the wave equations

<http://www.numdam.org/item?id=M2AN_1988__22_2_243_0>

© AFCET, 1988, tous droits réservés.

L’accès aux archives de la revue « M2AN. Mathematical modelling and numerical analysis - Modélisation mathématique et analyse numérique » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
ON THE APPLICATION OF MIXED FINITE ELEMENT METHODS TO THE WAVE EQUATIONS (*)

by Tunc Geveci (1)

Abstract — The convergence of certain semidiscrete approximation schemes based on the « velocity-stress » formulation of the wave equation and spaces such as those introduced by Raviart and Thomas is discussed. The discussion also applies to similar schemes for the equations of elasticity.

Resumé. — La convergence de certains schémas d'approximation semi-discrète basés sur la formulation « vitesse-contrainte » de l'équation d'onde et d'espace tel que ceux introduits par Raviart et Thomas est discuté. La discussion s'applique également pour les schémas similaires aux équations d'élasticité.

1. THE « VELOCITY-STRESS » FORMULATION OF THE WAVE EQUATION AND A SEMIDISCRETE VERSION

Let us consider the following initial-boundary value problem for the wave equation:

\[D_t^2 u(t, x) - \Delta u(t, x) = f(t, x), \quad t > 0, \quad x \in \Omega \subset \mathbb{R}^2, \]

\[u(t, x) = 0, \quad t > 0, \quad x \in \Gamma, \]

\[u(0, x) = u_0(x), \quad D_t u(0, x) = v_0(x), \quad x \in \Omega, \]

where \(\Omega \) is a bounded domain with boundary \(\Gamma \), and \(f, u_0, v_0 \) are given functions. Introducing the « stress » \(\sigma = \nabla u \), (1.1) may be reformulated as

\[D_t^2 u(t, x) - \text{div} \sigma(t, x) = f(t, x), \quad t > 0, \quad x \in \Omega, \]

\[\sigma(t, x) = \nabla u(t, x), \quad t > 0, \quad x \in \Omega, \]

\[u(t, x) = 0, \quad t > 0, \quad x \in \Gamma, \]

\[u(0, x) = u_0(x), \quad D_t u(0, x) = v_0(x), \quad x \in \Omega. \]

(*) Received in October 1986.
(1) Department of Mathematical Sciences, San Diego State University San Diego, California 92182
We use the notation of Johnson and Thomée [12]:

\[V = L^2(\Omega), \quad H = \{ \chi \in L^2(\Omega)^2 : \text{div} \chi \in L^2(\Omega) \} . \]

Using Green's formula

\[\int_{\Omega} u \text{div} \chi \, dx = \int_{\Gamma} u \chi \cdot n \, ds - \int_{\Omega} \nabla u \cdot \chi \, dx \]

where \(n \) is the unit exterior normal to \(\Gamma \), a Galerkin version of (1.2) is to seek \(u(t) \in V, \sigma(t) \in H, t > 0 \), satisfying

\[(D_t^2 u(t), w) - (\text{div} \sigma(t), w) = (f(t), w), \quad w \in V, \]

\[(\sigma(t) \chi) + (u(t), \text{div} \chi) = 0, \quad \chi \in H, \]

\[u(0) = u_0, \quad D_t u(0) = v_0, \]

where the parentheses denote the appropriate inner products (\(L^2 \)-inner product in \(V \), \(L^2(\Omega)^2 \)-inner product in \(H \)). If \(V_h \subset V \) and \(H_h \subset H \) are finite dimensional subspaces, such as the spaces introduced by Raviart and Thomas [13], and by Brezzi, Douglas, Jr. and Marini [6], a semidiscrete version of (1.3) seeks \(u_h(t) \in V_h, \sigma_h(t) \in H_h, t > 0 \), satisfying

\[(D_t^2 u_h(t), w_h) - (\text{div} \sigma_h(t), w_h) = (f(t), w_h), \quad w_h \in V_h, \]

\[(\sigma_h(t) \chi_h) + (u_h(t), \text{div} \chi_h) = 0, \quad \chi_h \in H_h, \]

\[u_h(0) = u_{0,h}, \quad D_t u_h(0) = v_{0,h}, \]

where \(u_{0,h}, v_{0,h} \in V_h \) are approximations to \(u_0 \) and \(v_0 \), respectively.

Johnson and Thomée [12] have discussed the parabolic counterpart of (1.3). The analysis of convergence of (1.3) can be carried out along similar lines, parallel to Baker and Bramble [4], for example. (1.3) is treated essentially as a non-conforming « displacement » model for the wave equation (1.1). The purpose of this note is to discuss the convergence of the « velocity-stress » models based on pairs of spaces \((V_h, H_h) \) such as those in [6], [12], [13]. Thus, defining \(v = D_t^2 u, v_h = D_t u_h, (1.3) \) and (1.3) are transformed, respectively, to

\[(D_t v(t), w) - (\text{div} \sigma(t), w) = (f(t), w), \quad w \in V, \]

\[(D_t \sigma(t), \chi) + (v(t), \text{div} \chi) = 0, \quad \chi \in H, \]

\[v(0) = v_0, \quad \sigma(0) = \sigma_0 = \nabla u_0, \]

where \(v(t) \in V, \sigma(t) \in H, t \geq 0 \), and

\[(D_t v_h(t), w_h) - (\text{div} \sigma_h(t), w_h) = (f(t), w_h), w_h \in V_h, \]
MIXED FINITE ELEMENT METHODS

(1.4_h) \[(D, \sigma_h(t), \chi_h) + (v_h(t), \text{div} \chi_h) = 0, \quad \chi_h \in H_h, \]
\[v_h(0) = v_{0,h}, \quad \sigma_h(0) = \sigma_{0,h}, \]
where \(v_h(t) \in V_h, \sigma_h(t) \in H_h, t \geq 0. \)

We now list the basic features of the space \(V_h, H_h \) which lead to a straightforward analysis of the convergence of \(v_h \) to \(v \) and \(\sigma_h \) to \(\sigma \):

(H.1) There exists a linear operator \(\Pi_h : H \rightarrow H_h \) such that

\[(\text{div} \Pi_h \chi, w_h) = (\text{div} \chi, w_h) \quad \forall w_h \in V_h, \quad \chi \in H, \]
\[\| \Pi_h \chi - \chi \| \leq C h^s \| \chi \| \quad \text{s for } 1 \leq s \leq r, \quad r \geq 2 \]

(\(\| \| \) is the \(L_2(\Omega) \)-norm, and \(\| \|_s \) is the \(H^s(\Omega) \)-norm).

(H.2) There exists a linear operator \(P_h : V \rightarrow V_h \) such that

\[(P_h v, \text{div} \chi_h) = (v, \text{div} \chi_h) \quad \forall \chi_h \in H_h, \quad v \in V, \]
\[\| P_h v - v \| \leq C h^s \| v \|_s, \quad 1 \leq s \leq r, \quad r \geq 2 \]

(\(\| \| \) is the \(L_2(\Omega) \)-norm, and \(\| \|_s \) is the \(H^s(\Omega) \)-norm, and, as usual, \(C \) denotes a generic constant which depends only on the data and on the particular discretization scheme).

If \(\Omega \) is a polygonal domain and \(V_h, H_h \) are the Raviart-Thomas spaces [12], [13], or if these spaces are the pairs introduced in the paper by Brezzi, Douglas, Jr., and Marini [6], \(\text{div} \chi_h \in V_h, \) and \(P_h \) can be taken to be the \(L_2 \)-projection. For an example of a pair \((V_h, H_h) \) satisfying the above hypotheses (with \(r = 2 \)), where \(P_h \) is not the \(L_2 \)-projection, we refer the reader to the paper by Johnson and Thomée [12]. We would also like to point out that (H.1) and (H.2) are valid for the mixed method that has been introduced by Arnold, Douglas, Jr., and Gupta [3] to approximate solution of plane elasticity problems. Our analysis is readily adapted to the corresponding (genuine) velocity-stress formulation of the time-dependent problem.

We can now state and prove our convergence result:

Theorem: If \(u \) is the solution of (1.1), \(v = Du, \sigma = \nabla u, \) and if the pair \(\{ v_h, \sigma_h \} \) is the solution of (1.4_h), under the hypotheses (H.1) and (H.2) we have, for \(1 \leq s \leq r, \quad r \geq 2, \)

\[\| v_h(t) - v(t) \| + \| \sigma_h(t) - \sigma(t) \| \leq C \left(\| v_0 - v_{0,h} \| + \| \sigma_0 - \sigma_{0,h} \| \right) + \]
\[+ C h^s \left(\| v_0 \|_s + \| \sigma_0 \|_s + \int_0^t (\| D \tau v(\tau) \|_s + \| D \tau \sigma(\tau) \|_s) \, d\tau \right). \]
Proof: Let us denote by X the space $V \times H$, the elements of which will be designated as $\xi = \{v, \sigma\}$ or $\zeta = \{w, \chi\}$ and set

$$((\xi, \zeta)) = (v, w) + (\sigma, \chi),$$

$$\|\xi\| = \sqrt{((\xi, \xi))}.$$

Let $X_h = V_h \times H_h$ be equipped with $((., .))$ and the induced norm $\|\cdot\|$. Elements of X_h will be designated as $\xi_h = \{v_h, \sigma_h\}$ or $\zeta_h = \{w_h, \chi_h\}$. We define the bilinear form $a(., .)$ on X by

$$(1.10) \quad a(\xi, \zeta) = -(\text{div} \sigma, w) + (v, \text{div} \chi)$$

for $\xi = \{v, \sigma\}$, $\zeta = \{w, \chi\}$.

We can now express (1.4) as

$$(1.11) \quad ((D_t \xi(t), \zeta)) + a(\xi(t), \zeta) = (f(t), w), \quad \zeta \in X$$

$$(\xi(t) = \{v(t), \sigma(t)\}, \zeta = \{w, \chi\}),$$

and we can express (1.4) as

$$(1.11_h) \quad ((D_t \xi_h(t), \zeta_h)) + a(\xi_h(t), \zeta_h) = (f(t), w_h), \quad \zeta_h \in X_h$$

$$(\xi_h(t) = \{v_h(t), \sigma_h(t)\}, \zeta_h = \{w_h, \chi_h\}).$$

Let us define $P_h \xi = \{P_h v, \Pi_h \sigma\}$ for $\xi = \{v, \sigma\} \in X$, and observe that

$$(1.12) \quad a(P_h \xi, \zeta_h) = a(\xi, \zeta_h), \quad \zeta_h \in X_h$$

by (H.1) ((1.5)) and (H.2) ((1.7)). Therefore we obtain from (1.11)

$$(1.13) \quad ((D_t P_h \xi(t), \zeta_h)) + a(P_h \xi(t), \zeta_h) = (f(t), w_h) + ((P_h D_t \xi(t) - D_t \xi(t), \zeta_h)), \quad \zeta_h \in X_h.$$

Setting $\varepsilon_h(t) = P_h \xi(t) - \xi_h(t)$, (1.11) and (1.13) yield

$$(1.14) \quad ((D_t \varepsilon_h(t), \zeta_h)) + a(\varepsilon_h(t), \zeta_h) = (P_h D_t \xi(t) - D_t \xi(t), \zeta_h)), \quad \zeta_h \in X_h.$$

Let us define $\Lambda_h : X_h \rightarrow X_h$ by

$$(1.15) \quad ((\Lambda_h \xi_h, \zeta_h)) = a(\xi_h, \zeta_h), \quad \xi_h, \zeta_h \in X_h.$$

Since

$$(1.16) \quad a(\xi_h, \zeta_h) = -a(\xi_h, \zeta_h), \quad \xi_h, \zeta_h \in X_h.$$
as is readily seen (cf. (1.10)), Λ_h is shew-adjoint,

$$((\Lambda_h \xi_h, \zeta_h)) = -((\xi_h, \Lambda_h \zeta_h)), \quad \xi_h, \zeta_h \in X_h,$$

and $-\Lambda_h$ generates the unitary group $e^{-t\Lambda_h}$. In particular,

$$\| e^{-t\Lambda_h} \xi_h(0) \| = \| \xi_h(0) \|, \quad t \in \mathbb{R}. \quad (1.18)$$

Let us denote by $P_h^0 : X \to X_h$ the projection with respect $((., .))$.

We can now express (1.14) as

$$D_t \varepsilon_h(t) + \Lambda_h \varepsilon_h(t) = P_h^0 (P_h D_t \xi(t) - D_t \xi(t)) \quad (1.19)$$

so that

$$\varepsilon_h(t) = e^{-t\Lambda_h} \varepsilon_h(0) + \int_0^t e^{-(t-\tau)\Lambda_h} P_h^0 (P_h D_\tau \xi(\tau) - D_\tau \xi(\tau)) d\tau. \quad (1.20)$$

(1.18) and (1.20) yield the estimate

$$\| \varepsilon_h(t) \| \leq \| \varepsilon_h(0) \| + \int_0^t \| P_h D_\tau \xi(\tau) - D_\tau \xi(\tau) \| d\tau \quad (1.21)$$

(P_h^0 is the $((., .))$-projection).

(1.21) is readily translated to

$$\| P_h v(t) - v_h(t) \| + \| \Pi_h \sigma(t) - \sigma_h(t) \|$$

$$\leq C (\| P_h v_0 - v_{0,h} \| + \| \Pi_h \sigma_0 - \sigma_{0,h} \| + \int_0^t (\| P_h D_\tau v(\tau) - D_\tau v(\tau) \| + \| \Pi_h D_\tau \sigma(\tau) - D_\tau \sigma(\tau) \|) d\tau$$

$$\leq C (\| v_0 - v_{0,h} \| + \| \sigma_0 - \sigma_{0,h} \| + \| P_h v_0 - v_0 \| + \| \Pi_h \sigma_0 - \sigma_0 \| + \int_0^t (\| P_h D_\tau v(\tau) - D_\tau v(\tau) \| + \| \Pi_h D_\tau \sigma(\tau) - D_\tau \sigma(\tau) \|) d\tau),$$

and this, together with (1.6) and (1.8), yields

$$\| P_h v(t) - v_h(t) \| + \| \Pi_h \sigma(t) - \sigma_h(t) \|$$

$$\leq C (\| v_0 - v_{0,h} \| + \| \sigma_0 - \sigma_{0,h} \| + h^s (\| v_0 \|_s + \| \sigma_0 \|_s)$$

$$+ Ch^s \int_0^t (\| D_\tau v(\tau) \|_s + \| D_\tau \sigma(\tau) \|_s) d\tau. \quad (1.22)$$
Since
\[\| v(t) - v_h(t) \| + \| \sigma(t) - \sigma_h(t) \| \]
\[\leq \| v(t) - P_h v(t) \| + \| P_h v(t) - v_h(t) \| \]
\[+ \| \sigma(t) - \Pi_h \sigma(t) \| + \| \Pi_h \sigma(t) - \sigma_h(t) \| \]
\[\leq C h^t (\| v(t) \|_s + \| \sigma(t) \|_s) + \| P_h v(t) - v_h(t) \| + \| \Pi_h \sigma(t) - \sigma_h(t) \| , \]
by (1.6) and (1.8), and
\[\| v(t) \|_s \leq \| v_0 \|_s + \int_0^t \| D \tau v(\tau) \|_s \, d\tau , \]
\[\| \sigma(t) \|_s \leq \| \sigma_0 \|_s + \int_0^t \| D \tau \sigma(\tau) \|_s \, d\tau , \]
(1.22) leads to (1.9), the assertion of the theorem.

2. SOME OBSERVATIONS IN REGARD TO THE TIME-DIFFERENCING OF THE SEMIDISCRETE MODEL

(1.4) leads to a system of ordinary differential equations in the form
\[M_0 D_t W - D \Sigma = F , \]
\[M_1 D_t \Sigma + D^T W = 0 , \]
where \(W \) corresponds to \(v_h \), \(\Sigma \) corresponds to \(\sigma_h \), \(M_0, M_1 \) are symmetric, positive-definite matrices, and \(D^T \) denotes the transpose of \(D \). The application of implicit Euler time-differencing
\[M_0 \frac{W^{n+1} - W^n}{k} - D \Sigma^{n+1} = F^{n+1} , \]
\[M_1 \frac{\Sigma^{n+1} - \Sigma^n}{k} + D^T W^{n+1} = 0 , \]
(\(k \) denotes the time step), necessitates the solution of
\[M_0 W^{n+1} - k D \Sigma^{n+1} = k F^{n+1} + M_0 W^n , \]
\[M_1 \Sigma^{n+1} + k D^T W^{n+1} = M_1 \Sigma^n . \]
\(M_0 \) is in block-diagonal form if \(V_h \) consists of functions with no continuity requirement across inter-element boundaries, as is the case in [6], [12], [13], and the elimination of \(W^{n+1} \) in (2.3) is efficiently implementable. This leads to a system in the form
\[(M_1 + k^2 D^T M_0^{-1} D) \Sigma^{n+1} = G , \]
where M_1 is symmetric, positive definite and $D^T M_0^{-1} D$ is symmetric, positive-semidefinite, for the determination of Σ^{n+1}.

On the other hand, (1.3*) leads to

\begin{equation}
M_0 D_t^2 U - D \Sigma = F,
\end{equation}

\begin{equation}
M_1 \Sigma + D^T U = 0,
\end{equation}

where U corresponds to u_h. (2.5) can be expressed as

\begin{equation}
M_0 D_t^2 U + D M_1^{-1} D^T U = F,
\end{equation}

where M_0, $D M_1^{-1} D^T$ are symmetric, positive-definite [12]. If (2.6) is expressed as a system in $\{U, W\}$,

\begin{equation}
D_t U - W = 0
\end{equation}

\begin{equation}
M_0 D_t W + D M_1^{-1} D^T U = F,
\end{equation}

and implicit Euler time-differencing is applied to (2.7),

\begin{equation}
\frac{U^{n+1} - U^n}{k} - W^{n+1} = 0
\end{equation}

\begin{equation}
M_0 \frac{W^{n+1} - W^n}{k} + D M_1^{-1} D^T U^{n+1} = F^{n+1},
\end{equation}

elimination of W^{n+1} leads to a system in the form

\begin{equation}
(M_0 + k^2 D M_1^{-1} D^T) U^{n+1} = \tilde{G}.
\end{equation}

The matrix in (2.9) is symmetric, positive-definite, so that (2.9) is solvable. But M_1 is not block-diagonal, unlike M_0, so that deriving the reduced system (2.9), which includes inverting M_1, is more expensive than forming the reduced system (2.4). The time-independent counterpart of (2.5),

\begin{equation}
- D \Sigma = F,
\end{equation}

\begin{equation}
M_1 \Sigma + D^T U = 0,
\end{equation}

led Arnold and Brezzi [2] to relax the requirement that $\text{div } \sigma_h \in L_2(\Omega)$ in order to have a block-diagonal matrix instead of M_1 and be able to eliminate Σ efficiently. This approach has to introduce a multiplier corresponding to the relaxation of the requirement $\text{div } \sigma_h \in L_2(\Omega)$.

The above considerations suggest that the « velocity-stress » formulation (1.4$_h$) may be preferable to (1.3$_h$) if the approximation of the « stress » σ is of primary concern.

The application of diagonally implicit Runge-Kutta methods (see, for example, Crouzeix [8], Crouzeix and Raviart [9], Alexander [1], Burrage vol. 22, n° 2, 1988
[7], Dougalis and Serbin [10]) to (2.1) leads to systems similar to (2.4) so that our discussion is relevant to higher-order time differencing as well. We will not prove error estimates for such full-descrete approximation schemes based on \((1.4_h)\). Such estimates should be obtainable by employing techniques that have been utilized in [5] or [11], for example.

REFERENCES

