Finite element solution of a nonlinear diffusion problem with a moving boundary
ESAIM: Modélisation mathématique et analyse numérique, Volume 20 (1986) no. 3, pp. 403-426.
@article{M2AN_1986__20_3_403_0,
     author = {\v{C}erm\'ak, Libor and Zl\'amal, Milo\v{s}},
     title = {Finite element solution of a nonlinear diffusion problem with a moving boundary},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {403--426},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {20},
     number = {3},
     year = {1986},
     mrnumber = {862784},
     zbl = {0605.65078},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1986__20_3_403_0/}
}
TY  - JOUR
AU  - Čermák, Libor
AU  - Zlámal, Miloš
TI  - Finite element solution of a nonlinear diffusion problem with a moving boundary
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1986
SP  - 403
EP  - 426
VL  - 20
IS  - 3
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_1986__20_3_403_0/
LA  - en
ID  - M2AN_1986__20_3_403_0
ER  - 
%0 Journal Article
%A Čermák, Libor
%A Zlámal, Miloš
%T Finite element solution of a nonlinear diffusion problem with a moving boundary
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1986
%P 403-426
%V 20
%N 3
%I AFCET - Gauthier-Villars
%C Paris
%U http://www.numdam.org/item/M2AN_1986__20_3_403_0/
%G en
%F M2AN_1986__20_3_403_0
Čermák, Libor; Zlámal, Miloš. Finite element solution of a nonlinear diffusion problem with a moving boundary. ESAIM: Modélisation mathématique et analyse numérique, Volume 20 (1986) no. 3, pp. 403-426. http://www.numdam.org/item/M2AN_1986__20_3_403_0/

1 D J Chin, M R Kump and R W Dutton, SUPRA-Stanford University Process Analysis Program, Stanford Electronics Laboratories Stanford University, Stanford, U S A , July 1981

2 T Dupont, G Fairweather and J P Johnson, Three-Level Galerkin Methods for Parabolic Equations SIAM J Numer Anal 11 (1974), 392 410 | MR | Zbl

3 M Lees, A priori Estimates for the Solutions of Difference Approximations to Parabolic Differential Equations Duke Math J 27 (1960), 287-311 | MR | Zbl

4 C D Maldonado, Romans Ii, A Two-Dimensional Process Simulator for Modeling and Simulation in the Design of VLSI Devices Applied Physics A31 (1983), 119-138

5 B R Penumalli, A Comprehensive Two-Dimensional VLSI Process Simulation Program BICEPS, IEEE Trans on Electron Devices 30 (1983), 986-992

6 M F Wheeler, A priori L 2 error estimates for Galerkin approximations to parabolic partial differential equations SIAM J Numer Anal 10 (1973), 723-759 | MR | Zbl

7 M Zlamal, Curved Elements in the Finite Element Method I SIAM J Numer Anal 10 (1973), 229-240 | MR | Zbl

8 M Zlamal, On the Finite Element Method Numer Math 12 (1968), 394-409 | MR | Zbl

9 M Zlamal, Finite Element Methods for Nonlinear Parabolic Equations R A I R O Anal Numer 11 (1977), 93-107 | Numdam | MR | Zbl