Sur les inéquations variationnelles à opérateur non coercif
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 19 (1985) no. 2, p. 195-212
@article{M2AN_1985__19_2_195_0,
     author = {Cortey-Dumont, Philippe},
     title = {Sur les in\'equations variationnelles \`a op\'erateur non coercif},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {19},
     number = {2},
     year = {1985},
     pages = {195-212},
     mrnumber = {802593},
     language = {fr},
     url = {http://www.numdam.org/item/M2AN_1985__19_2_195_0}
}
Cortey-Dumont, Philippe. Sur les inéquations variationnelles à opérateur non coercif. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 19 (1985) no. 2, pp. 195-212. http://www.numdam.org/item/M2AN_1985__19_2_195_0/

[1] C Baiocchi, Lecture Note Math gem, n° 606 (1977), pp 27-34 | MR 488847 | Zbl 0374.65053

[2] A Bensoussan, J L Lions, Applications des inéquations variationnelles en contrôle stochastique, t 1 et 2, Dunod (1978-1982) | MR 513618 | Zbl 0411.49002

[3] A Bensoussan, J L Lions, CRAS, t 276, Serie A, pp 1189-1133 (1973), CRAS , t 278, Serie A, p 675, p 747 (1974)

[4] H Brezis, Thèse d'État

[5] F Brezzi, W W Hager, P A Raviart, Error estimates for the finite element solution of variational inequalities, Num Math 28 (1977), p 431 | MR 448949 | Zbl 0369.65030

[6] P G Ciarlet, The finite element method for elliptic problems, North-Holland (1978) | MR 520174 | Zbl 0383.65058

[7] P G Ciarlet, P A Raviart, Maximum principle and uniform convergence for the finite element method, Comp meth in appl mech and eng 2 (1973), pp 1-20 | MR 375802 | Zbl 0251.65069

[8] P Cortey-Dumont, Approximation numérique d'une I Q V liée a des problèmes de gestion de stock, RAIRO rouge, vol 4 (1980), p 335 | Numdam | MR 596539 | Zbl 0462.65045

[9] P Cortey-Dumont, On the approximation of a class of Q V I related to the impulse control, Free boundary value problems (Ed Magenes) (1979) | Zbl 0479.65041

[10] P Cortey-Dumont, Finite element approximation in L -norm of variational inequalities with non-linear operator, Article soumis a Num Math | Zbl 0574.65064

[11] P Cortey-Dumont, E Loinger, CRAS , 288, Série A, p 14 (1979), CRAS, 290 , Serie A , p 255 (1980)

[12] P Cortey-Dumont, E Loinger, Sur l'approximation d'une I Q V liée a des problèmes d'infiltration en milieu poreux, Calcolo, Vol XIX, fasc II (avril-juin) 1982 | MR 697459 | Zbl 0501.76085

[13] R Falk, Error estimates for the approximation of a class of variational inequalities, Math of Computation, vol 28, n° 128 (1974), pp 963-971 | MR 391502 | Zbl 0297.65061

[14] R Glowinski, J L Lions, R Tremoliere, Numerical analysis of variational inequalities, North-Holland (1976) | MR 635927 | Zbl 0463.65046

[15] J C Miellou, A mixte relaxation algorithm applied to quasi-variational inequations, Proceedings 7th IFIP Conférence (1975), vol 2, p 192, Springer-Verlag (1976) | Zbl 0345.49014

[16] J Nitsche L -convergence of finite element approximation, Lecture Note in Math ,Vol 606 (1977), pp 1-15 | MR 488848 | Zbl 0362.65088

[17] R Scott, Optimal L -estimates for the finite element method on irregular meshes,Math of Comp, vol 30, n° 316 (1976), pp 681-697 | MR 436617 | Zbl 0349.65060

[18] F Brezzi and L A Caffarelli, Convergence of the discrete free boundaries for finite element approximations, RAIRO, vol 17, n° 4 (1983), pp 385-395 | Numdam | MR 713766 | Zbl 0547.65081

[19] Ph Cortey-Dumont, CRAS, 296, Série I, pp 753-756 (1983) | MR 707335 | Zbl 0535.65044

[20] Ph Cortey-Dumont, On finite element approximation in the L -norm of parabolic variational inequalities and quasi-variational inequalities Rapport interne CMA Ecole Polytechnique n°112

[21] F Conrad, P Cortey-Dumont, On the numerical analysis of bifurcation problems in ellptic variational inequalities Rapport interne CMA École Polytechnique n° 119

[22] P Cortey-Dumont, Sur l'approximation de l'equation de Hamilton-Jacobi-Bellman, accepte dans Mathematics in applied sciences

[23] M Boulbrachene, P Cortey-Dumont, J -C Miellow, Notion d'application a-contractante Exemples (a paraître)