On Korn's second inequality
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 15 (1981) no. 3, p. 237-248
@article{M2AN_1981__15_3_237_0,
     author = {Nitsche, J. A.},
     title = {On Korn's second inequality},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {15},
     number = {3},
     year = {1981},
     pages = {237-248},
     zbl = {0467.35019},
     mrnumber = {631678},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1981__15_3_237_0}
}
Nitsche, J. A. On Korn's second inequality. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 15 (1981) no. 3, pp. 237-248. http://www.numdam.org/item/M2AN_1981__15_3_237_0/

[1] P. G. Ciarlet, The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications. North-Holland Publ. Comp., Amsterdam-New York- Oxford (1978). | MR 520174 | Zbl 0383.65058

[2] G. Duvaut and J. L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, Paris (1972). | MR 464857 | Zbl 0298.73001

[3] G. Fichera, Linear Elliptic Differential Systems and Eigenvalue Problems. Springer-Verlag, Berlin-Heidelberg-New York (1965). | MR 209639 | Zbl 0138.36104

[4] G. Fichera, Existence theorems in elasticity-boundary value problems of elasticity with unilateral constraints. Encyclopedia of Physics (S. Flügge, Chief Editor), Vol. VIa/2 : Mechanics of Solids II (C. Truesdell, Editor), pp. 347-424, Springer-Verlag, Berlin (1972).

[5] K. O. Friedrichs, On the boundary value problems of the theory of elasticity and Korn's inequality. Ann. of Math., 48, (1947), 441-471. | MR 22750 | Zbl 0029.17002

[6] A. Korn, Solution générale du problème d'équilibre dans la théorie de l'élasticité dans le cas où les efforts sont donnés à la surface. . Ann. Université Toulouse (1908), 165-269. | JFM 39.0853.03 | Numdam

[7] A. Korn, Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen. Bull. Intern. Cracov. Akad. umiejet (Classe Sci. Math. nat.) (1909) 706-724. | JFM 40.0884.02

[8] L. E. Payne and H. F. Weinberger, On korn's inequality. Arch. Rational Mech. Anal., 8, (1961), 89-98. | MR 158312 | Zbl 0107.31105

[9] E. M. Stein, Singular integrals and differentiability properties of functions. Princeton Univ. Press, Princeton, N. J. (1970). | MR 290095 | Zbl 0207.13501

[10] W. Velte, Direkte Methoden der Variationsrechnung. . B. G. Teubner, Stuttgart (1976). | MR 500387 | Zbl 0333.49035