Simultaneous approximation in negative norms of arbitrary order
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 15 (1981) no. 3, p. 231-235
@article{M2AN_1981__15_3_231_0,
     author = {Helfrich, Hans-Peter},
     title = {Simultaneous approximation in negative norms of arbitrary order},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {15},
     number = {3},
     year = {1981},
     pages = {231-235},
     zbl = {0495.41010},
     mrnumber = {631677},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1981__15_3_231_0}
}
Helfrich, Hans-Peter. Simultaneous approximation in negative norms of arbitrary order. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 15 (1981) no. 3, pp. 231-235. http://www.numdam.org/item/M2AN_1981__15_3_231_0/

[1] I. Babuska and A. K. Aziz, Survey lectures on the mathematical foundations of the finite element method. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. Part I. (Ed. A. K. Aziz) Academic Press, New York, London, 1972. | MR 421106 | Zbl 0268.65052

[2] J. H. Bramble and A. H. Schatz, Least squares methods for 2 m th order elliptic boundary-value problems, Math. Comp., 25 (1971), 1-32. | MR 295591 | Zbl 0216.49202

[3] J. H. Bramble, A. H. Schatz, V. Thomée and L. H. Wahlbin, Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations, SIAM J. Numer. Analysis, 14 (1977), 218-241. | MR 448926 | Zbl 0364.65084

[4] J. H. Bramble and R. Scott, Simultaneous approximation in scales of Banach spaces, Math. Comp. 32 (1978), 947-954. | MR 501990 | Zbl 0404.41005

[5] S. G. Krein, Linear Differential Equations in Banach space, American Math. Soc., Providence, 1971. | MR 342804 | Zbl 0229.34050

[6] J. L. Lions and E. Magenes, Nonhomogeneous Boundary Value Problems and Applications, Vol. I, Springer Verlag, Berlin and New York, 1972. | Zbl 0223.35039