Eigenvalue approximations by mixed methods
RAIRO. Analyse numérique, Volume 12 (1978) no. 1, pp. 27-50.
@article{M2AN_1978__12_1_27_0,
     author = {Canuto, C.},
     title = {Eigenvalue approximations by mixed methods},
     journal = {RAIRO. Analyse num\'erique},
     pages = {27--50},
     publisher = {Centrale des revues, Dunod-Gauthier-Villars},
     address = {Montreuil},
     volume = {12},
     number = {1},
     year = {1978},
     mrnumber = {488712},
     zbl = {0434.65032},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1978__12_1_27_0/}
}
TY  - JOUR
AU  - Canuto, C.
TI  - Eigenvalue approximations by mixed methods
JO  - RAIRO. Analyse numérique
PY  - 1978
SP  - 27
EP  - 50
VL  - 12
IS  - 1
PB  - Centrale des revues, Dunod-Gauthier-Villars
PP  - Montreuil
UR  - http://www.numdam.org/item/M2AN_1978__12_1_27_0/
LA  - en
ID  - M2AN_1978__12_1_27_0
ER  - 
%0 Journal Article
%A Canuto, C.
%T Eigenvalue approximations by mixed methods
%J RAIRO. Analyse numérique
%D 1978
%P 27-50
%V 12
%N 1
%I Centrale des revues, Dunod-Gauthier-Villars
%C Montreuil
%U http://www.numdam.org/item/M2AN_1978__12_1_27_0/
%G en
%F M2AN_1978__12_1_27_0
Canuto, C. Eigenvalue approximations by mixed methods. RAIRO. Analyse numérique, Volume 12 (1978) no. 1, pp. 27-50. http://www.numdam.org/item/M2AN_1978__12_1_27_0/

1. I. Babuska, The Finite Element Method with Lagrangian Multipliers, Num.Math., 20, 1973, pp. 179-192. | Zbl

2. I. Babuska and A. K. Aziz, Survey Lectures on the Mathematical Foundations of the Finite Element Method in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations; A. K, Aziz, Ed., Academic Press, NewYork 1972, pp. 3-359. | Zbl

3. I. Babuska, J. T. Oden and J. K. Lee, Mixed-Hybrid Finite Element Approximations of Second Order Elliptic Boundary-Value Problems, TICOM Report 75-7, University of Texas at Austin, 1975. | Zbl

4. I. Babuska and J. E. Osborn, Numerical Treatment of Eigenvalue Problems for Differential Equations with Discontinuous Coefficients, Technical Note BN-853, University of Maryland, College Park, 1977. | Zbl

5. G. Birkhoff, C. De Boor, B. Swartz and B. Wendroff, Rayleigh-Ritz Approximation by Piecewise Cubic Polynomials, S.I.A.M. J. Num. Anal., 13, 1973 pp. 188-203. | Zbl

6. J. H. Bramble and J. E. Osborn, Rate of Convergence Estimates for Nonself-adjoint Eigenvalue Approximation, Math. of Comp., vol. 27, No. 123, 1973 pp. 525-549. | Zbl

7. F. Brezzi, On the Existence, Uniqueness and Approximations of Saddle-Point Problems Arising from Lagrangian Multipliers, R.A.I.R.O., R 2, août 1974, pp. 129-151. | Numdam | Zbl

8. F. Brezzi and P. A. Raviart Mixed Finite Element Methods for 4th Order Elliptic Equations, Rapport Interne No. 9, C.M.A. École Polytechnique, Palaiseau, 1976. | MR

9. P. G. Ciarlet and P. A. Raviart, A Mixed Finite Element Method for the Biharmonic Equation Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations, C. DE BOOR, Ed., Academic Press, New York, 1974, pp. 125-145. | MR | Zbl

10. G. Fix Eigenvalue Approximation by the Finite Element Method, Adv. in Math., 10, 1973, pp. 300-316. | MR | Zbl

11. R. Glowinski, Approximations externes, par éléments finis de Lagrange d'ordre un et deux, du problème de Dirichlet pour l'opéraieur biharmonique. Méthode itérative de résolutions des problèmes approchés, Topics in Numerical Analysis, J. J. H. MILLER, Ed., Academic Press, London, 1973, pp. 123-171. | MR | Zbl

12. C. Goulaouic, Valeurs propres de problèmes aux limites irréguliers : applications, in Spectral Analysis, C.I.M.E. Session 1973, Cremonese, Rome, 1974, pp. 80-140.

13. V. A. Kondrat'Ev, Boundary Problems for Elliptic Equations in Domains with Conical or Angular Points, Trans. Moscow Math. Soc, vol. 16, 1967 pp. 227-313. | MR | Zbl

14. M. Merigot, Régularité des fonctions propres du laplacien dans un cône,C. R. Acad. Sc, Paris, 279, série A, 1974, pp. 503-505 | MR | Zbl

15. M. Merigot, Solutions en norme LP des problèmes élliptiques dans des polygônes plans, Thèse à l'Université de Nice, 1974.

16. J. E. Osborn, Spectral Approximation for Compact Operators, Math, of Comp., 29, 1975, pp. 712-725 | MR | Zbl