Nous étudions les propriétés métriques de l'approximation diophantienne simultanée dans le cas non archimédien. Nous prouvons d'abord une loi du 0 - 1 de type Gallagher, que nous utilisons ensuite pour obtenir un résultat de type Duffin-Schaeffer.
We discuss the metric theory of simultaneous diophantine approximations in the non-archimedean case. First, we show a Gallagher type 0-1 law. Then by using this theorem, we prove a Duffin-Schaeffer type theorem.
@article{JTNB_2003__15_1_151_0, author = {Inoue, Kae}, title = {The metric simultaneous diophantine approximations over formal power series}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {151--161}, publisher = {Universit\'e Bordeaux I}, volume = {15}, number = {1}, year = {2003}, zbl = {1045.11052}, mrnumber = {2019008}, language = {en}, url = {http://www.numdam.org/item/JTNB_2003__15_1_151_0/} }
TY - JOUR AU - Inoue, Kae TI - The metric simultaneous diophantine approximations over formal power series JO - Journal de Théorie des Nombres de Bordeaux PY - 2003 DA - 2003/// SP - 151 EP - 161 VL - 15 IS - 1 PB - Université Bordeaux I UR - http://www.numdam.org/item/JTNB_2003__15_1_151_0/ UR - https://zbmath.org/?q=an%3A1045.11052 UR - https://www.ams.org/mathscinet-getitem?mr=2019008 LA - en ID - JTNB_2003__15_1_151_0 ER -
Inoue, Kae. The metric simultaneous diophantine approximations over formal power series. Journal de Théorie des Nombres de Bordeaux, Tome 15 (2003) no. 1, pp. 151-161. http://www.numdam.org/item/JTNB_2003__15_1_151_0/
[1] Khintchine's problem in metric diophantine approximation. Duke Math. J. 8 (1941), 243-255. | JFM 67.0145.03 | MR 4859 | Zbl 0025.11002
, ,[2] Additive Number Theory of Polynomials Over a Finite Field. Oxford University Press, New York, 1991. | MR 1143282 | Zbl 0759.11032
, ,[3] Approximation by reduced fractions. J. Math. Soc. Japan 13 (1961), 342-345. | MR 133297 | Zbl 0106.04106
,[4] On metric Diophantine approximation in positive characteristic, preprint. | MR 2008007 | Zbl 1049.11073
, ,[5] Basic Ergodic Theory. Birkäuser Verlag, Basel-Boston- Berlin, 1991. | MR 1725389
,[6] The k-dimensional Duffin and Shaeffer conjecture. Sém. Théor. Nombres Bordeaux 1 (1989), 81-87. | EuDML 93503 | Numdam | MR 1050267 | Zbl 0714.11048
, ,[7] Number Theory in Function Fields. Springer-Verlag, New York-Berlin-Heidelberg, 2001. | MR 1876657 | Zbl 1043.11079
,[8] Metric Theory of Diophantine Approximations. John Wiley & Sons, New York -Toronto-London- Sydney, 1979. | MR 548467 | Zbl 0482.10047
,