An analogue of Pfister's local-global principle in the burnside ring
Journal de théorie des nombres de Bordeaux, Volume 11 (1999) no. 1, pp. 31-44.

Let N/K be a Galois extension with Galois group 𝒢. We study the set 𝒯(𝒢) of -linear combinations of characters in the Burnside ring (𝒢) which give rise to -linear combinations of trace forms of subextensions of N/K which are trivial in the Witt ring W(K) of K. In particular, we prove that the torsion subgroup of (𝒢)/𝒯(𝒢) coincides with the kernel of the total signature homomorphism.

Soit N/K une extension galoisienne de groupe de Galois 𝒢. On étudie l’ensemble 𝒯(𝒢) des combinaisons linéaires sur de caractères de l’anneau de Burnside (𝒢), qui induisent des combinaisons -linéaires des formes trace de sous-extensions de N/K qui sont triviales dans l’anneau de Witt W(K) de K. On montre que le sous-groupe de torsion de (𝒢)/𝒯(𝒢) est le noyau de l’homomorphisme signature.

@article{JTNB_1999__11_1_31_0,
     author = {Epkenhans, Martin},
     title = {An analogue of {Pfister's} local-global principle in the burnside ring},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {31--44},
     publisher = {Universit\'e Bordeaux I},
     volume = {11},
     number = {1},
     year = {1999},
     mrnumber = {1730431},
     zbl = {0964.11021},
     language = {en},
     url = {http://www.numdam.org/item/JTNB_1999__11_1_31_0/}
}
TY  - JOUR
AU  - Epkenhans, Martin
TI  - An analogue of Pfister's local-global principle in the burnside ring
JO  - Journal de théorie des nombres de Bordeaux
PY  - 1999
SP  - 31
EP  - 44
VL  - 11
IS  - 1
PB  - Université Bordeaux I
UR  - http://www.numdam.org/item/JTNB_1999__11_1_31_0/
LA  - en
ID  - JTNB_1999__11_1_31_0
ER  - 
%0 Journal Article
%A Epkenhans, Martin
%T An analogue of Pfister's local-global principle in the burnside ring
%J Journal de théorie des nombres de Bordeaux
%D 1999
%P 31-44
%V 11
%N 1
%I Université Bordeaux I
%U http://www.numdam.org/item/JTNB_1999__11_1_31_0/
%G en
%F JTNB_1999__11_1_31_0
Epkenhans, Martin. An analogue of Pfister's local-global principle in the burnside ring. Journal de théorie des nombres de Bordeaux, Volume 11 (1999) no. 1, pp. 31-44. http://www.numdam.org/item/JTNB_1999__11_1_31_0/

[1] P. Beaulieu and T. Palfrey. The Galois number. Math. Ann. 309 (1997), 81-96. | MR | Zbl

[2] P.E. Conner and R. Perlis. A Survey of Trace Forms of Algebraic Number Fields. World Scientific, Singapore, (1984). | MR | Zbl

[3] C. Drees, M. Epkenhans, and M. Krüskemper. On the computation of the trace form of some Galois extensions. J. Algebra, 192 (1997), 209-234. | MR | Zbl

[4] M. Epkenhans and M. Krüskemper. On Trace Forms of étale Algebras and Field Extensions. Math. Z. 217 (1994), 421-434. | MR | Zbl

[5] W. Scharlau. Quadratic and Hermitian Forms. Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, (1985). | MR | Zbl

[6] T.A. Springer. On the equivalence of quadratic forms. Proc. Acad. Amsterdam, 62 (1959), 241-253. | MR | Zbl

[7] O. Taussky. The Discriminant Matrices of an Algebraic Number Field. J. London Math. Soc. 43 (1968), 152-154. | MR | Zbl