Identification des paramètres d'un processus gaussien fractionnaire
Journal de la société française de statistique, Volume 141 (2000) no. 1-2, p. 149-166
@article{JSFS_2000__141_1-2_149_0,
     author = {Istas, Jacques},
     title = {Identification des param\`etres d'un processus gaussien fractionnaire},
     journal = {Journal de la soci\'et\'e fran\c caise de statistique},
     publisher = {Soci\'et\'e fran\c caise de statistique},
     volume = {141},
     number = {1-2},
     year = {2000},
     pages = {149-166},
     language = {fr},
     url = {http://www.numdam.org/item/JSFS_2000__141_1-2_149_0}
}
Identification des paramètres d'un processus gaussien fractionnaire. Journal de la société française de statistique, Volume 141 (2000) no. 1-2, pp. 149-166. http://www.numdam.org/item/JSFS_2000__141_1-2_149_0/

[Ayache et Lévy-Vehel (1999)] Ayache et Lévy-Vehel (1999). Generalized Multifractional Brownian Motion: definition and preliminary results. In. M. Dekking, J. Vehel, E. Lutton and C. Tricot (eds) Fractals : Theory and Application in Engineering. Springer-Verlag, 17-32. | MR 1726365 | Zbl 0964.60046

[Ayache et Lévy-Vehel (2000)] Ayache et Lévy-Vehel (2000). The generalized multifractional brownian motion. Stat. Inf. Stoc. Proc. (A paraître). | Zbl 0979.60023

[Bachelier (1900)] Bachelier, L. (1900). Théorie de la spéculation. Gautier-Villars, Paris. | JFM 31.0075.12

[Benassi et al. (1996)] Benassi, A., Jaffard, S. et Roux, D. (1996). Gaussian Processes and Pseudodifferential Elliptic operators. Revista Mathematica Iberoamericana. 13 (1) 19-90. | Zbl 0880.60053

[Benassi et al. (1998a)] Benassi, A., Cohen, S., Istas, J. et Jaffard, S. ( 1998a). Identification of Filtered White Noises. Stock. Proc. Appl. 75 31-49. | MR 1629014 | Zbl 0932.60037

[Benassi et al. (1998b)] Benassi, A., Cohen, S., Istas, J. ( 1998b). Identifying the multifractional function of a Gaussian proces. Stat. and Proba. Letters. 39 337-345. | MR 1646220 | Zbl 0931.60022

[Benassi et al. (2000)] Benassi A., Bertrand, P., Cohen, S., et Istas, J. (2000). Identification of the Hurst index of a Step Fractional Brownian Motion. Stat. Inf. Stoc. Proc, Vol. 3, Issue 1/2, p. 101-111. | MR 1819289 | Zbl 0982.60081

[Benassi et Istas (2001)] Benassi et Istas, J. (2001). Processus autosimilaires. Fractals et Lois d'échelle, IC2, Abry, P. Goncalves, P. Lévy-Vehel Eds., Hermès (A paraître).

[Beran (1994)] Beran, J. (1994). Statistics for long memory process. Chapman and Hall. | MR 1304490 | Zbl 0869.60045

[Bertrand (2000)] Bertrand, P.; (2000). A local method for estimating change points: the hat-function. Statistics, Vol. 34, n° 3, p. 215-235. | MR 1802728 | Zbl 0955.62031

[Black et Scholes (1973)] Black, F. et Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. Journal of Political Economy. 81 7-54. | Zbl 1092.91524

[Cœurjolly (2000a)] Cœurjolly, J.-F. ( 2000a). Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Stat. Inf. Stoc. Proc. (à paraître). | Zbl 0984.62058

[Cœurjolly (2000b)] Cœurjolly, J.-F. ( 2000b). Simulation et identification of the fractional brownian motion: a bibliographical and comparative study. J. Stat. Software, Vol. 5.

[Cœurjolly et Istas (2000)] Cœurjolly, J.-F. et Istas, J. (2000). Cramer-Rao bounds for Fractional Brownian Motions. Stat. and Proba. Letters. | Zbl 1092.62574

[Cohen (1999)] Cohen, S. (1999). From self-similarity to local self-similiraty: the estimation problem. In Fractals : Theory and Applications in Engineering, 3-16. M. Dekking, J. Lévy Véhel, E. Lutton and C. Tricot Eds, Springer Verlag. | MR 1726364 | Zbl 0965.60073

[Cohen (2001)] Cohen, S. (2001). Processus localement auto-similaires. in Fractals et Lois d'échelle, IC2, Abry, P. Goncalves, P. Lévy-Véhel Eds., Hermès (A paraître).

[Dalhaus (1989)] Dahlhaus, R. (1989). Efficient parameter estimation for self-similar processes. Ann Statist. 17 (4) 1749-1766. | MR 1026311 | Zbl 0703.62091

[Grenander (1981)] Grenander, U. (1981). Abstract inference. Wiley, New York. | MR 599175

[Guyon et Léon (1989)] Guyon, X. (1989). Convergence en loi des h-variations d'un processus gaussien stationnaire. Ann Inst. Poincaré. 25 265-282. | Numdam | MR 1023952 | Zbl 0691.60017

[Hall et al. (1994)] Hall, P., Wood, A. et Feuerverger (1994). Estimation of fractal index and fractal dimension of a Gaussian process by counting the number of level crossings. J. Time Ser. Anal. 6 587-606. | MR 1312323 | Zbl 0815.62060

[Hall et Wood (1993)] Hall, P., Wood, A. (1993). On the performance of box-counting estimators of fractal dimension. Biometrika. 80 246-252. | MR 1225230 | Zbl 0769.62062

[Istas (1996)] Istas, J. Estimating the singularity function of a gaussian process with applications. Scand. J. Statist. 23 (5) 581-596. | MR 1439713 | Zbl 0898.62106

[Istas et Lang (1994)] Istas, J. et Lang, G. (1994). Variations quadratiques et estimation de l'exposant de Holder local d'un processus gaussien. Cr. Acad. Sc. Paris, Série I. 319 201-206. | MR 1288403 | Zbl 0803.60038

[Istas et Lang (1997)] Istas, J. et Lang, G. (1997). Quadratic variations and estimation of the Holder index of a gaussian process. Ann. Inst. Poincaré 33 (4) 407-436. | Numdam | MR 1465796 | Zbl 0882.60032

[Kolmogorov (1940)] Kolmogorov, A. (1940). Wienersche und einige andere interessante Kurcen im Hilbertsche Raum. (German). C; R. (Dokl) Acad. Sci. URSS.26 115-118. | JFM 66.0552.03 | MR 3441 | Zbl 0022.36001

[Léger et Pontier (1999)] Léger, S. et Pontier, M. (1999). Drap Brownien fractionnaire. C.R. Acad. Sc. Paris, Série I. 329 893-898. | MR 1728004 | Zbl 0945.60047

[Mandelbrot et Van Ness (1968)] Mandelbrot, J. et Van Ness, J. (1968). Fractional Brownian Motions, Fractional Noises and Applications. SIA M Review. 10 422-437. | MR 242239 | Zbl 0179.47801

[Meyer (1990)] Meyer, Y. (1990). Ondelettes et Opérateurs. volume 1. Hermann, Paris. | MR 1085487

[Neveu (1968)] Neveu, J. (1968). Processus alatoires gaussiens. Presses de l'Université de Montréal, SMS. | MR 272042 | Zbl 0192.54701

[Peltier et Lévy-Véhel (1994)] Peltier, R. et Lévy-Véhel, J. (1994). A new method for estimating the parameter of fractional brownian motion. Rapport de recherches 2396, 1-40, disponible sur http://www-syntim.inria.fr/fractales/.